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GEOLOGIC HISTORY

In the west Mangala area, the Noachian cratered plateau unit consists of heavily
bombarded material. The Noachian terrain was locally eroded by water derived from
ground-water seepage or melted ground ice, leaving small, degraded channels and the
pitted surface texture of knobby plateau material. North-trending, normal faulting also
formed large ridges that are locally transitional to scarps. The Noachian units were then
partly covered by a mantle of Hesperian intercrater plains material that probably consists
of reworked Noachian debris. During the Early Hesperian, east-trending faults produced
Memnonia Fossae to the south. The fossae were then the source of catastrophic floods
that formed Mangala and Labou Valles. During the Late Hesperian, basaltic flows of the
ridged plains unit filled low areas and large craters. This unit in the western part of the
map area is covered in one place by a fan deposit from the mouth of a theater-headed
channel. The channel was produced by sapping or composite processes and probably
formed during Late Hesperian to Early Amazonian time. Amazonis Planitia was then
surfaced by poorly indurated material of Amazonian age, the Medusae Fossae
Formation, which may consist of ignimbrite deposits.

A CANDIDATE LANDING SITE
ROVER TRAVERSES AND SAMPLE STATIONS

Candidate landing sites must contain a diversity of geologic units, spanning a wide
age range, that are in close enough proximity to be sampled by a vehicle of limited
mobility. If a site also has unique geologic features, its potential value is greater. The west
Mangala Valles area includes several such sites; the most promising is shown in figures 5
and 6.

Twenty-four sample stations are located within 38 km of the landing site (fig. 5). (The
landing and ascent sites are assumed to be the same or close together.) Traverse routes
to the stations are provisionally laid out from the landing site, where contingency samples
would be obtained (table 1); the routes appear to be relatively smooth and free of
obstacles at image resolution (50 m/pixel). However, much higher resolution images,
possibly obtained from a Mars Observer or other missions, are considered necessary for
the final selection of an optimum landing site and of rover traverses to the stations
recommended for sampling. (The mostly craterless surface of intercrater plains material
in parts of the traverse area may be due to a thin mantle of young eolian dust that may be
eroding off the Medusae Fossae Formation.)

Like the candidate landing sites in this map area and the east Mangala area
(Chapman and others, 1989; fig. 2), the other sites in the planned science study areas (fig.
7) maximize the probability of selecting samples that will answer the widest diversity of
fundamental questions within reasonable mission constraints.
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proposed site for a sample-return mission to Mars.

The map base is a composite of parts of two Viking 1:500,000-scale photomosaics
(U.S. Geological Survey, 1985a, b). These photomosaics are based on high-resolution
images except in the area that now forms the northwest corner of the composite, for
which only lower resolution images are available. Because the latter images were
acquired at sun angles opposite these on the high-resolution images, the “mesa” that
appears in this area is actually a depression. Some map units correspond or are partly
equivalent to units on smaller scale maps (Mutch and Morris, 1979; Scott and Tanaka,
1986). However, in many places interpretations and contacts have been revised to reflect
information visible on high-resolution Viking images; geomorphologic details on these

ridged plains material (unit Hpr); this unit also fills large cq craters. Wrinkle ridges are
prominent surface features, and the unit contains low, lobate scarps. Both features are
geomorphic indicators that are commonly associated with basaltic volcanism (Greeley
and Spudis, 1981; Scott and Tanaka, 1982). Furthermore, a basaltic composition for
Martian lavas is consistent with independent lines of evidence such as Viking lander data
(Binder and others, 1977; Clark, 1979), Earth-based spectral observations (Singer and
others, 1979), and geophysical modeling results (McGetchin and Smyth, 1978). The
outlines of buried craters observed on the unit suggest that the basaltic lava flows have
mantled older materials. Large impact fractures and faults may have provided pathways

the discontinuous nature of their tributaries and the proximity of the channels in many
places to hummocks and hollows indicate that the channels may be formed by a process
related to the melting of ground ice. The widening and narrowing of the channels could be
due to coalescence of alases related to the formation of thermokarst topography.
Terrestrial alases and these Martian valleys differ from river valleys in that they display
unexpected turns, blind spurs, irregular tributaries, and, in places, trends against the
general inclination of the relief (Czudek and Demek, 1970).

CHANNEL TYPE 2: MANGALA VALLES BRANCH

Labou Vallis, a 240-km-long, broad, shallow branch channel of the main Mangala
Valles channel, cuts the Noachian knobby plateau unit and is overlain by the upper
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Figure2. Index map showinglocation of west Mangala Valles area in relation to east Mangala area,
Mangala Valles channel, Amazonis Planitia lowland, Terra Sirenum highland (shaded), principal
grabens (heavy lines), large impact craters (circular outlines with ticks), and upper member of
Medusae Fossae Formation (unit Amu, dotted).

Table 1. Materials to be sampled at stations (numbers) of proposed landing-site (LS) traverses (fig. 5).

Station number  from LS (km)

Estimated Estimated
minimum minimum
traverse distance traverse distance

Sample description and geologic significance  Station number  from LS (km)
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Figure 4. Photoclinometric profiles across edge of upper member of Medusae Fossae

Formation. Lines of profiles shown in figure 3A.
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Figure 5. Rover traverses and sample stations (numbers) in area of candidate landing site

(triangle). Four traverse loops that begin and end at landing site are shown; estimated
length of shortest loop is 15 km; lengths of other loops are 35, 48, and 52 km. Material of
Noachian degraded channels (unit Nchd) shown in color; other unit symbols as on
geologic map. Sample descriptions given in table 1. Image centered at lat 7.5° S., long
158.6°.

Sample description and geologic significance
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of the map area (Chapman and others, 1989). 166 N N EEE T I O 0.1 T U SN U S SO NN I WO A § 200p 7

In the map area, large, north-trending, widely spaced ridges occur on Noachian 0.1 1.0 10 10 100 1000 B 1eel 7
cratered plateau material; they are as long as 40 km and as wide as 5 km. South of the map CRATER DIAMETER, IN KILOMETERS C UM T
area, these ridges are truncated by faults of Memnonia Fossae. The Noachian ridges are 0 0 1 2 3°4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
transitional with scarps of roughly the same size. One of the scarps seen on the Figure 1. Log-log cumulative crater size-frequency curves for principal geologic units in map area.
photomosaic base (composed of orthographic images) has a false depression or graben Bars represent standard error (IN/A, where N=cumulative number of craters and A=unit area).
on its west side that is not seen on filtered rectilinear images (fig. 3E) or on the
1:2,000,000-scale photomosaic of the area (U.S. Geological Survey, 1979). The pervasive,
parallel, northward trends of the ridges and local scarps indicate that they are tectonic C c
features. Noting that many Noachian ridges have steep scarps, Scott and Tanaka (1986) 250 :
have interpreted the ridges to have formed mostly by normal faulting.

North-trending wrinkle ridges are prominent features on the ridged plains material. 800 7
They differ from the large Noachian ridges in that they are much smaller and are 750 -
asymmetrical. These features are common on the Moon, Mars, and Mercury, and 700 i
interpretations of their origin differ (Colton and others, 1972; Howard and Muehlberger, . |
1973; Scott, 1973; Lucchitta, 1976; Plescia and Golombek, 1986). In studies of the Tharsis
plateau ridge systems, Watters and Maxwell (1986) stated that the ridges are best 600 -
explained as compressional features that formed during a period of isostatic uplift. They 550 i
probably formed in conjunction with volcanic deposits of ridged plains material. The 506 A
wrinkle ridges parallel older Noachian ridges and scarps; either the features are volcanic
and formed by lava following earlier fractures, or they are tectonic, resulting from 450 =
thrusting and compression along zones of structural weakness. 400 4

The northeast-trending boundary scarp, which separates the Terra Sirenum 150 1
highland from the Amazonis Planitia lowland to the north, cannot be observed in the map
area; it may be covered by the Medusae Fossae Formation. Geologic mapping east of this 300 n
area suggests that the scarp formed during the Late Hesperian (Chapman and others, 250 4
1989). Two small, east-trending scarps at about lat 7° S., long 158.5° may also be of Late 560 )
Hesperian age, because they cut the intercrater plains unit and are overlain by the - e
Medusae Fossae Formation; the scarps appear to be those of normal faults bounding a . MTM -05147 150 I
small graben. 111962 100 4

- East Mangala . |
Valles area
e o | i i | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12

122‘ m. Interp retqtion: Oldest. fluvial deposits in map area; water Images e clarified ly spatie.)l filtgring (Cor.1dit amsl (Chayes; 1979)1 The; depths of e member of th? Medusae Fossae Formation. East of the map area, terraces cut ir.1to Scott,cgt.llc-)lr.l, 3;?(,1 sé‘;rilf\deZ\,S 129878, Geologic map of Mars: U.S. Geological Survey - ’ Eo::l?a?nznfnio(sijzl)? S:(\),l;aalbr;;a\t/f)?ca;noiill:stgzcrater " : Po:msel?rl:k:):f 3??4‘22:::: lft:eo(sjse:: }s:l(t)irl;ﬁ)a?gn, Amu);
derived from melting of ground ice. Smooth floors and degraded walls channels, thicknesses of geologic units, and heights of scarps were obtained in places by AMAZONIAN SYSTEM intercrater plains material by Mangala Valles are overlain by an Amazonian-Hesperian Miscellanesis [Rvesticats . & ’ . : . ;
; : . . . . . : t s gations Series Map 11083, scale 1:25,000,000. composition TV scan for evidence of layering, sorting, or
DESCRIPTION OF MAP UNITS suggest erosion and burial usw;g Photo.cllnom;:tnc metho:.s Off Davis and :oderblonlll (1384) ' The rzla;wi ages of Smooth plains material (unit Aps) occurs locally on Terra Sirenum, partly covering volcanic unit (1,900+900 cra.te-rs >1km in diameter per 106 km?; Chap.ma.n and others, Scott, D.H., and Tanaka, K.L., 1982, Ignimbrites of the Amazonis Planitia region of 1 4 Intercrater plains material having slightly rougher vapor cavities
PLAINS AND PLATEAU MATERIALS CRATER MATERIALS gztc;gﬁ;;etclinll)t; s?rr;tigg:ggg?(;l;;o:sa;‘rl]rjssuzl:)i)rteaj bsyn::aratecr 22:;55 (%r; l)au Is were the floors of many impact craters; lobate flow fronts and wrinkle ridges are not observed 198921' The(rjef;)ri, Labcluf k\)/alhs 1S p:obably no your;g?r t_harlll Lfate }}]‘lesg‘erlar;]m ag;. Lab(l)u Mars: Journal of Geophysical Research, v. 87, no. B12, p. 1179-1190. surface and higher albedo than at LS; core 14 20 Possible young ignimbrite deposit (Amu); TV
[Cumulative densities listed in the descriptions below are for craters whose diameters are greater [All cratersin map areaare interpreted to be of impact origin. To avoid uneven portraval of data, onl The east Manaala area. which contains another pronosed sam le-re.tur.n site. has on the surface of the unit. On the basis of its smooth s.urface and its occurrence in cuts degraded channels; because it appears morphologically fresher than these channels, 1986, Geologic map of the western equatorial region of Mars: U.S. Geological sample scan . . . N
than 1 km, normalized to 106km?] evaterstar o = 5 : o rany SHERG IS, MR hEe A PEOpE P L topographic depressions, the unit is interpreted to be eolian deposits. (The cumulative it may be considerably younger. Like other parts of Mangala Valles, Labou is thought to Survey Miscellaneous Investigations Series Map [-1802-A, scale 1:15,000,000. 2 6.5 Ejecta and rim material around <500-m-diameter 15 22 Intercrater plains material having very smooth 0° 180°
ger than 3 km in diameter were mapped. Craters were assigned to four classes on the basis also been mapped in this series at 1:500,000 scale (Chapman and others, 1989). It lies . ianed hi . ken f sl Blin 1 be a result of catastrophic flooding (Milton, 1973; Baker and Milton, 1974; Sharp and Sh RP d Malin. M.C Ch 1 Mars: Geolosical Soci : fate: ) NORTH POLE SOUTH POLE
’ . of state of preservation and stratigraphic control. Subscripts refer to degradation sequence] northeast of the west Manaal (atlat 2.5° to 7.5° S., long 145° to 150°; fig. 2). crater de.nSIty assigned to this unit was taken from counts on similar material in larger Malin. 1975) Labou . inedislands tha fuvialinoriin. andi . od P, Rt AR N, NLA., 1975, Channels on Mars: Geological Society of America C.rater . ) ) ‘ surface; core sample ) 120° 60° o? _300° 240° 1805
AmU | Upper member of the Medusae Fossae Formation—In northern part of . - wes ga'a map area . . »ong » 18- € craters directly east of the map area.) ,1975).La ContamSStrea’“l“. 1ed' 15 that appear fiuvial nonigin, andits uninterrupt Bulletin, v. 86, p. 593-609. 3 10 Eolian and possible fluvial material of intercrater 16 28 Possible young ignimbrite deposit (Amu); TV l
map area; forms nearly featureless, thick (edges are 0.6-1.0 km high), cq Material of well-preserved craters—Bowl-shaped craters have sharp, SOHE pllams units comrmon to both areas have slightly different ages, although the “‘T‘ts A relatively small outcrop of the middle member (Amm) of the Medusae Fossae cennection WI.th Mangala Valles .mdlcat(.as that the water that fgrmed these islands was Singer, R.B., McCord, T.B., Clark, R.N., Adams, J.B., and Huguenin, R.L., 1979, Mars plains unit scan Selisla
massive blanket without visible bedding; relatively high but varied complete rim crests and steep walls. No recognizable ejecta. Craters anel theirchannels e dated by the e e Of.the WUEIMA NS TR Formation occurs in the northwest corner of the map area; it is interpreted to be poorly generated during the catastrophic flooding that carved the main Mangala channel. surface composition from reflectance spectroscopy: A summary: Journal of LS 15 Completion of first traverse 17 37 Intercrater plains material having a slightly 5 3 :
albedo. Margins locally show ridges with as much as 50 m of relief, superposed on poorly indurated upper member of Medusae Fossae channels of three different geomorphic types a.nd ages, of which onl.y S corr}(r]?on to indurated pyroclastic and eolian deposits (Scott and Tanaka, 1986). The lowland area of CHANNEL TYPE 3: THEATER-HEADED CHANNELS Geophysical Research, v. 84, no. B14, p. 8415-8426. 4 3 Channel material (Nchd); core sample rougher surface and higher albedo than at /J% ¥ . A
some at nearly right angles to others; unit also contains local clustered Formation. Interpretation: Youngest craters in map area; ejecta agth are’?‘s. {The eastern map - cantains Lewer Amazenian;. namew “tiebon Amazonis Planitia is almost completely covered in the map area by the upper member Two theater-headed channels occur in the western part of the map area. One of Squyres, S.W., 1984, The history of water on Mars: Annual Review of Earth and 5 5 Heavily cratered plateau material (Nplq) in talus other stations; core sample i N w”f*@ﬁ w ol
i e ; . . . . hannels” of a type and age not seen in the western area; the degraded channel networks ; : : : . ) ) . ; . . : < o f o N‘ltEﬂﬁTlS
mounds and pits. Interpretation: Possible pyroclastic flows whose possibly covered by eolian material N £ th ype 3 din th Tﬁr : ¢ ¢ (unit Amu) of the Medusae Fossae Formation (Scott and Tanaka, 1986); this material these channels, atlat 8.9° S., long 159.3°, cuts the intercrater plains unit, and a fan deposit Planetary Science, v. 12, p. 83-106. of scarp; TV scan of scarp for evidence of LS 48 Completion of third traverse % 4 % LR Site 1 E j i
distal and upper zones are poorly lithified; ridges are yardangs; - Material of slightly degraded craters—Rim crests high, complete; may oht € wgstern area were not observed in t € easterr.\ are:f\.) uIsv[at e:lst our types o forms a blanket having relatively high but varied albedo lapping over the cratered uplands at the channel’s mouth overlies ridged plains material (fig. 3D). Photoclinometric profiles Tanaka, K.L., 1986, The stratigraphy of Mars: Lunar and Planetary Science Conference, layering 18 2.5 Intercrater plains material (Hpi) having darker aive 1 S O A R R “b‘ i [ i % -
clustered mounds and pits may be incipient yardangs or eolian dunes have central peaks; walls relatively steep; floors may be rough or ebannsling.ate kneum fohave accunred at different fimes in the Mangala.region. of Terra Sirenum. The unit may be generally 2 to 3 km thick (Scott and Tanaka, 1982), but across the channel show it to be deeply dissected (440 m deep), 2 km across, and 17th, Houston, March 1986, Proceedings, Part 1, in Journal of Geophysical 6 8 Local low albedo on intercrater plains albedo than at other stations OLYMPU 62 % BRI - 4 " ‘
and blowouts. Age based on stratigraphic position; crater counts on smooth and some are lower than adjacent terrain; extensive ejecta GEOGRAPHIC SETTING itis about 1 km thick where it spills into a crater at lat 6.5°S. long 156.1° (figs. 3A, 4). It has intermediate between u- and v-shaped in cross section. Because of their stratigraphic Research, v. 91, no. B13, p. E139-E158. material 19 7.5 Channel material (Nchd) Site 3 & £ TRE, at
nonindurated material are indeterminate due to eolian modification superposed on Hesperian and older units. Interpretation: Moderately The map area includes the northern section of Labou Vallis (the westernmost no visible bedding and is nearly featureless, with the exception of depressions and position, we consider these two channels to be of the same Late Hesperian to Early U.S. Geological Survey, 1979, Controlled photomosaic of the Memnonia northwest 7 10 Heavily cratered plateau material 20 12 Heavily cratered plateau material exposed in M ; g bR - 0°
Middle member of the Medusae Fossae Formation—In northwest young to young crater material branch of Mangala Valles) and several small channels on Terra Sirenum (fig. 2). Mangala streamlined ridges along its margins. The ridges were interpreted by Ward (1979) to be Amazonian age as similar theater-headed channels east of the map area (Chapman and quadrangle of Mars: U.S. Geological Survey Miscellaneous Investigations Series 8 12.5 Thin mantle of eolian and possible fluvial material talus of scarp; TV scan of scarp for layering ® |Sit b o Do
corner of map area; forms featureless material; underlies upper - Material of moderately degraded craters—Rim crests low, rounded; Valles compose a north-trending channel system 850 km long and in places 150 km wide, yardangs formed by erosion of friable material. Yardang development was possibly others, 1989). Map [-1186, scale 1:2,000,000. of intercrater plains unit (Hpi) blanketing 21 15.5 Ejecta and rim material of crater 500 m in N:t =
member of Medusae Fossae Formation. Interpretation: Poorly some incomplete. Floors generally flat; may be partly filled with which appears to originate at one of the east-trending faults of Memnonia Fossae that lies influenced by joints and fractures, as indicated by their occurrence at nearly perpendicular Both channels in the map area are interpreted to have formed initially by ground- 1985a, Controlled photomosaic of part of the Mangala Valles region of rough, heavily cratered plateau unit; core diameter ¥ 3 oK .
indurated pyroclastic and eolian material sparsely cratered younger material; some central peaks. Modified 530 km south of the map area, at about lat 18.5° S., long 149°. Many of the small channels angles at several locations, for example at lat 6.6° S., long 156.1° (fig. 3A). Although the water sapping, because their morphologic characteristics are common to terrestrial Mars: U.S. Geological Survey Miscellaneous Investigations Series Map [-1666, sample 22 20 Heavily cratered plateau material : ¢ ; » )
Aps Smooth plains material —Smooth deposits partly covering floors of many ejecta superposed on Noachian plateau materials; ejecta may be on Terra Sirenum, west of the Mangala branches, also trend north. The highland-lowland origin of this poorly indurated material is not yet fully understood, Scott and Tanaka canyons formed by this process (Pieri, 1980; Laity, 1983; Laity and Malin, 1985; Kochel scale 1:500,000. 9 16.5 Channel material (Nchd); core sample 23 27.5 Rim material of cq crater o (7 ko  Fch -
impact craters. Crater density 370+200. Interpretation: Smooth dissected by degraded channels or buried by ridged plains material. boundary scarp that separates Terra Sirenum from Amazonis Planitia is covered or (1982) interpreted it to be an ignimbrite on the basis of its morphologic similarities to and Piper, 1986). However, east of Mangala Valles, a similar type of channel occurs that __ 1985b, Controlled photomosaic of part of the Mangala Valles region of 10 23 Heavily cratered plateau material 24 38.5 Possible young ignimbrite deposit (Amu); TV s © 148 .;-1‘ v ;
surfaces and occurrence in topographic depressions suggest eolian Interpretation: Moderately old crater material absent throughout the map area. terrestrial ignimbrites. Outside the map area, for example at lat 2° S., long 157°, the unit lacks observable fan material; it has been compared with terrestrial channels that formed Mars: U.S. Geological Survey Miscellaneous Investigations Series Map 1-1653, 11 28 Thin mantle of intercrater plains material over scan for evidence of layering, sorting, or vapor 2 LR = iy t AR, s AGhe
origin; age determined by crater density - Material of highly degraded craters—Rim crests degraded and low, STRATIGRAPHY OF PLAINS AND PLATEAU MATERIALS appears to be associated with possible collapsed calderas that occur as elongate by combined surface runoff and ground-water sapping (Schumm and Phillips, 1986). The scale 1:500,000. heavily cratered plateau unit; core cavities s S 2 4 ' v o o A ST I
Ridged plains material —On Terra Sirenum; forms relatively smooth incomplete, or nearly absent; some central peaks; shallow, flat floors depressions near the centers of outcrops. Alternatively, the friable material has been fan deposit in the map area bears concentric ridges, which may indicate that additional Ward, A.W., 1979, Yardangs on Mars: Evidence of recent wind erosion: Journal of sample LS 52 Completion of fourth traverse Bl L \ pr R 4 iﬂf“‘f i A9 &

plains in low areas and within large craters. Has wrinkle ridges, a few commonly filled with younger material. Rim crests in places dissected NOACHIAN SYSTEM interpreted as evidence of a previous polar position (Schultz, 1985; Schultz and Lutz, processes such as debris flow (producing solifluction lobes) or glaciation (resulting in Geophysical Research, v. 84, no. B14, p. 8147-8166. LS 35 Completion of second traverse 150 Total distance of four traverses 120° 60° 0° 300° ‘ 2400 I
lobate scarps, and faint outlines of buried craters. Crater density by channels. Some craters partly or completely buried by younger The oldest geologic units in the map area are the heavily cratered plateau material 1988) and equivalent in age to the oldest lava flows from Tharsis Montes, dated as moraines) may have had a minor but active role in channel formation; recessional Watters, T.R., and Maxwell, T.A., 1986, Orientation, relative age, and extent of the 12 10 Intercrater plains material; very smooth surface . . . . .
2,400+300. Interpretation: Volcanic deposits, probably basaltic in materials. No recognizable ejecta. Interpretation: Oldest crater (unit Npl1) and the knobby plateau material (unit Nplk). The cratered plateau unit has Hesperian by Scott and Tanaka (1986). However, Schultz’s age assignment of the unit moraines having a similar appearance occur on terrestrial glacial outwash fans such as Tharsis plateau ridge system: Journal of Geophysical Research, v. 91, no. B8, p. due to thin mantle of young eolian dust; core Figure:7. Planned science studyareas onMarsithat 1r.1cl'ude candidatelandingsites for futare
composition. Lobate scarps interpreted to be lava flow fronts material very rough, dissected, and cratered surfaces partly mantled by younger plains materials; does not seem likely, because east of the map area, in the vicinity of lat 4° S_, long 146°, the Northern Iliamna glacier in Alaska (Press and Siever, 1986, p. 244). 8113-8125. sample samplevetum missions,
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