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Thousands of Mars surface targets
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ChemCam: Target composition

But… no searchable repository of 
target compositional information

 Which targets contain fluorine?

 Which targets contain plagioclase?

 Is there consensus on target X’s composition?
Kiri Wagstaff et al. 3
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Introduction: Geochemical data for both rocks and 

soils from Gale Crater, and Gusev Crater, are compared 

here with data from the Gamma Ray Spectrometer 

(GRS) experiment on the Mars Odyssey Spacecraft [1, 

2]. Both Gale and Gusev craters are located near the di-

chotomy boundary between the Noachian Highlands 

and the younger volcanics and transitional units to the 

north (Fig. 1). Element ratios in these samples may pro-

vide a link between the regional provinces analyzed by 

GRS and the materials at the two landing sites. The lith-

ophile data may lead to a better understanding of the 

origin and evolution of the martian crust in this region 

of Mars, while the volatile element components SO3, Cl, 

and water provide information on volcanic aerosols, 

weathering processes and potentially recent climate [3]. 

Fig. 1 – Portion of the Mars Global Geologic map with 

arrows showing Gale (West) and Gusev (East) craters on the 

dichotomy boundary.  See Fig. 2 for scale and reference. 

 

Geochemical components and normalization: 

Comparing the chemistry of Gale and Gusev samples 

with other martian data must take into account the dif-

ferent geochemical components in the samples. The 

most important distinction is between the lithophile el-

ements including Al, Si, Fe, Mn, Ca, Na, Mg, etc. that 

represents the rock component, and  the volatile ele-

ments including H, C, Cl, S, that represent later external 

input to the soils and rocks. Normalization to SiO2, pro-

vides a way to correct the lithophile elements for varia-

ble amounts of the mobile element component, mainly 

sulfur, chlorine and water. 

 

 

Fig. 2 – Areas with distinctive GRS signatures based on 5 

x 5 degree binned data.  

Fig. 3 – CaO/SiO2 vs. FeO/SiO2 data for areas near Gale 

and Gusev Craters (Fig. 2) with distinctive GRS signatures. 

 

Regional trends from GRS: The GRS composi-

tions reflect the integrated abundances to a depth of ~ 

0.5 m, but the instrument is not collimated, and ~ 50% 

of the received gamma rays come from an area ten de-

grees in diameter on the surface below the instrument 

[4]. Thus most of the signal from each 5 degree binned 

data used in this study comes from outside the nominal 

area represented by the data. Because Gale and Gusev 

craters are only ~ 3 degrees in diameter, there is no way 

to get their unique GRS signatures. Therefore, because 

the two landing sites are on the dichotomy boundary, 

Example of GRS 
10 degree “pixel” 
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Manual composition annotations
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[Johnson et al., LPSC 2016]
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Map display of 
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Thanks: Fred Calef (MMGIS)
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1. Named Entity Recognition

 CoreNLP - Machine learning [Finkel et al., 2005]

 Find and classify all “entities”

◦ Default entities: 

 Person, Location, Organization

◦ You can define your own!

 Element, Mineral, Target

11Kiri Wagstaff et al.
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2. Relation extraction
 jSRE – Machine learning [Giuliano et al., 2006]

 Predict whether there is a “contains” 

relation for each [Target, Element] or 

[Target, Mineral] pair

13

contains?

contains?
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Relation extraction performance
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Content type Manual

(LPSC15+16)

Documents 118

Elements 1742

Minerals 888

Targets 824 

Relations 481
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Content type Manual

(LPSC15+16)

Automatic

(LPSC14,15,16)

Documents 118 5,920

Elements 1742 63,984

Minerals 888 38,937

Targets 824 3,053

Relations 481 348
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Content type Manual

(LPSC15+16)

Automatic

(LPSC14,15,16)

Documents 118 5,920

Elements 1742 63,984

Minerals 888 38,937

Targets 824 3,053

Relations 481 348

Time (per document) ~30 mins ~5 seconds
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Summary

 Connect data to (published) knowledge

 Enable searches not previously possible

 Facilitate scientific progress and exploration 
using IE and ML methods

 Next steps
◦ Integrate with PDS Analyst’s Notebook

◦ Extract information from journal articles

19

Questions
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Observations

Publications

Knowledge

Thank you: JPL AMMOS program, the Planetary Data System, and the MSL mission.
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Example extractions

 Link contains potassium

◦ “Link, which was one of the first K-rich 

conglomerate targets observed with 

ChemCam, whereas felsic group 5 shows a 

higher Na/K ratio.”

 Link contains hydrogen

◦ “Both of these are good candidates since, in 

Link at least, the hydrogen signature is 

relatively prominent.”

Kiri Wagstaff et al. 21
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