

30°S

60°S

90°S

315°W

270°W

225°W



90°W

60°W

## G. W. Patterson<sup>1</sup>, G. C. Collins<sup>2</sup>, M. J. Kinczyk<sup>3</sup>, A. D. Patthoff<sup>4</sup>, R. P. Perkins<sup>1</sup>, R. T. Pappalardo<sup>5</sup>, M. T. Bland<sup>6</sup>, T. L. Becker<sup>6</sup>

<sup>1</sup>Johns Hopkins University Applied Physics Laboratory, Laurel MD
<sup>2</sup>Wheaton College, Norton, MA
<sup>3</sup>North Carolina State University, Raleigh, NC
<sup>4</sup>Planetary Science Institute, Tucson, AZ
<sup>5</sup>Jet Propulsion Laboratory, Pasadena CA
<sup>6</sup>USGS Astrogeology, Flagstaff AZ

## OUTLINE

- The map base
- Observation mosaics
- Crater statistics
- Structural mapping
- Where things stand

We have produced a controlled photomosaic drawn from all Cassini ISS images with a resolution better than 500 m/px and a phase angle of less than 120° in the CLR, GRN, UV3, and IR3 filters (> 10,362 control points).



We have produced a controlled photomosaic drawn from all Cassini ISS images with a resolution better than 500 m/px and a phase angle of less than 120° in the CLR, GRN, UV3, and IR3 filters (586 images).



We have produced a controlled photomosaic drawn from all Cassini ISS images with a resolution better than 500 m/px and a phase angle of less than 120° in the CLR, GRN, UV3, and IR3 filters (621 images).



This is the first controlled photomosaic of an icy satellite produced with image data having global coverage at a consistent (and map-able) spatial resolution!





| Bundle Adjustment                |         |  |  |  |
|----------------------------------|---------|--|--|--|
| images                           | 586     |  |  |  |
| angle constraints                | ±2°     |  |  |  |
| ground points                    | 10,362  |  |  |  |
| all points constrained in radius | ±150 m  |  |  |  |
| line/sample measurements         | 173,704 |  |  |  |

| rms error pointing corrections |          |                 |             |         |  |
|--------------------------------|----------|-----------------|-------------|---------|--|
| (degrees)                      |          |                 |             |         |  |
| sequence                       | # images | right ascension | declination | twist   |  |
| ISS_003EN (N1487)              | 14       | 0.01405         | 0.80253     | 0.00069 |  |
| ISS_004EN (N1489)              | 60       | 0.01805         | 0.18419     | 0.00331 |  |
| ISS_011EN (N1500)              | 92       | 0.24755         | 0.16474     | 0.07659 |  |
| ISS_028EN (N1536)              | 3        | 0.42992         | 0.00256     | 0.08760 |  |
| ISS_061EN (N1584)              | 8        | 0.14867         | 0.02227     | 0.03583 |  |
| ISS_080EN (N1597)              | 40       | 0.03780         | 0.02085     | 0.00993 |  |
| ISS_088EN (N1602)              | 24       | 0.06630         | 0.01961     | 0.03075 |  |
| ISS_091EN (N1604)              | 35       | 0.06329         | 0.02946     | 0.00656 |  |
| ISS_121EN (N163746)            | 29       | 0.02785         | 0.07692     | 0.01289 |  |
| ISS_121EN (N163747)            | 7        | 0.01289         | 0.03852     | 0.00539 |  |
| ISS_131EN (N165285)            | 32       | 0.02745         | 0.04840     | 0.02771 |  |
| ISS_131EN (N165286)            | 17       | 0.01380         | 0.05263     | 0.01300 |  |
| ISS_136EN (N1660)              | 36       | 0.05241         | 0.16927     | 0.00565 |  |
| ISS_141EN (N1669)              | 15       | 0.00454         | 0.11912     | 0.00270 |  |
| ISS_142EN (N1671)              | 25       | 0.01700         | 0.11131     | 0.00362 |  |
| ISS_144EN (N1675)              | 10       | 0.00615         | 0.13104     | 0.00227 |  |
| ISS_153EN (N1694)              | 33       | 0.00563         | 0.05850     | 0.00191 |  |
| ISS_154EN (N1696)              | 4        | 0.01098         | 0.08338     | 0.00472 |  |
| ISS_155EN (N1697)              | 40       | 0.22431         | 0.01667     | 0.22151 |  |
| ISS_156EN (N1699)              | 10       | 0.03328         | 0.01130     | 0.03738 |  |
| ISS_158EN (N1702)              | 30       | 0.08275         | 0.10141     | 0.05260 |  |
| ISS_163EN (N1711)              | 17       | 0.01137         | 0.03883     | 0.00391 |  |
| ISS_165EN (N1714)              | 5        | 0.00262         | 0.00674     | 0.00551 |  |
| All Images                     | 586      | 0.12451         | 0.11596     | 0.06784 |  |













A global basemap with consistent image resolution, and image geometry, provides an ideal dataset for compiling crater statistics of Enceladus.

- We have mapped craters to diameters < 1 km across the surface.





We have used those data to generate areal crater density maps.

- Comparison suggests general agreement.















Broadly speaking, the surface of Enceladus can be (and has been – Smith et al., 1982; Spencer et al., 2009; Crow-Willard and Pappalardo, 2015) divided into 4 primary terrains, differentiated by observed tectonic fabric(s):

Smith et al., 1982

- Ancient cratered terrain
- Leading hemisphere terrain
- Trailing hemisphere terrain
- South-polar terrain



# Structural Mapping

### Cratered plains

- Extends from the sub-Saturn hemisphere, over the north pole, to the anti-Saturn hemisphere
- At least three generations of tectonic features cross-cut the ancient terrain:
  - a. The most recent are open fractures and parallel, linear chains of pits that appear to be associated with deformation of the south polar terrain.
  - b. The next oldest are apparent normal faults and graben-like structures that are perhaps associated with deformation of terrain in the leading and trailing hemispheres.
  - c. The oldest tectonic features are subdued, widely-spaced ridges and troughs of unknown origin.



### Cratered plains

- Open fractures and pit chains



### Cratered plains

- Subdued ridges (pink) and troughs (maroon)



#### Leading hemisphere terrain and Trailing hemisphere terrain (Dorsa region)





# WHERE THINGS STAND

We have made significant progress toward completing a 1:2M global geologic map of Enceladus!

- We have generated a controlled photomosaic for use as our basemap and a collection of controlled observation mosaics.
- We have nearly completed a global catalog of craters at diameters < 1 km.
- We have mapped structural features associated with the oldest surfaces of Enceladus.
- We are in the process of mapping structural features associated with the leading and trailing hemisphere terrains.

# WHERE THINGS STAND

We have made significant progress toward completing a 1:2M global geologic map of Enceladus!

- We have generated a controlled photomosaic for use as our basemap and a collection of controlled observation mosaics.
- We have nearly completed a global catalog of craters at diameters < 1 km.
- We have mapped structural features associated with the oldest surfaces of Enceladus.
- We are in the process of mapping structural features associated with the leading and trailing hemisphere terrains.

#### A fair amount remains to be done, though.

- Structural mapping of the South-Polar terrain remains.
- Geologic units need to be defined and boundaries need to be drawn.
- A correlation of map units needs to be developed.
- There is that review process too....