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Geologic Context of Hrad Vall
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Broader geologic context of map area. Boxes indicate
HiRISE image coverage of map area, as of May 2017 coverage of DEMs shown below.
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Geologic Context of Hrad Vallis
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Recent Related Publication

* Mouginis-Mark and Wilson (2016). Possible sub-glacial
eruptions in the Galaxias Quadrangle Mars. Icarus 267, 68 —
85.

* Good evidence that this area was once partially covered by
ice - based upon current topography and flow paths.

* Galaxias Mons is of intermediate age compared to two major
flow events, and that an origin as a hyaloclastite ridge is
plausible (Chapman et al., 2000). Role of intrusives for this
area is important.
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New Geological Map of the Hrad Vallis Region
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form an ice body that gradually sublimed.
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and were partially exhumed prior to Apf.
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Apf is an inflated lava flow with lava-rise %] 3
pits, not a second frozen lahar.
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Smooth Plains, Linear Ridge, and Lobate Units
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Frozen Lahar or Inflated Lava Flow?
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Frozen Lahar or Inflated Lava Flow?
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Frozen Lahar or Inflated Lava Flow?
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Lava-Rise Plateau Margins
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Testing the Frozen Lahar Hypothsis

Topography
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Testing the Frozen Lahar Hypothsis

b Flow Velocity (um/yr)
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Cross section through our finite element model showing flow velocities
in a pure ice unit with an average temperature of 218 K on its
equatorward-facing (southern) slopes and 212 K on its poleward-facing
(northern) side. The flow velocities for the 40% ice case are 2—3%
compared to pure ice case.



Testing the Frozen Lahar Hypothsis
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The mean maximum slope within the north- and
south-facing quadrants differ by 1.34°, but
statistically significant N-S asymmetries are not
distinguishable for differences <7.18°, based on a 1o
detection threshold.




Testing the Frozen Lahar Hypothsis

Blue: Range of ice contents and
ages consistent with 1.18-1.70°
asymmetry (i.e., mean slope
difference * 10,)

Red Line: Conservative case with
a detection limit of 7.18°, which
is the maximum difference
between the mean slopes + 1o

Conservatively, we conclude that
if Apfis a frozen lahar, then it is
younger than 13.7 Ma (if pure
ice), younger than 471.3 Ma (if it
contains 40% ice), or potentially 107 50 0 50 80 100
older if it was emplaced in the Ice Content (%)

debris flow regime (<40% ice).
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Testing the Frozen Lahar Hypothesis

Model runs resulting in 45 m of ice retreat for various sediment contents within ice at
36°N, which provides an upper limit of the age of 45-m-thick ice between 33-36°N.
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Young ages are unrealistic for ice-rich (>70% ice) units because they would
sublimate away before developing detectable asymmetries by viscous flow.

lce-poor (<70% ice) units could survive for >21 Ma, but would be expected to
generate thick lag deposits, which are inconsistent with observations.



Conclusions

Aps may be a sublimation lag associated with a former lahar

Apf provides one of the best examples of an inflated pahoehoe-
like lava flow on Mars and a compelling candidate for
interaction between a lava flow and surficial ice

Topographic depressions within Apf are consistent with the
characteristics of lava-rise pits, and need not evoke a formation
mechanism involving impacts into a frozen lahar

Aps and Apf do not appear related to the same event
This implies that Hrad Vallis is a complex outflow channel

system generated through alternating episodes of catastrophic
aqueous flooding events and effusive eruptions
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