# 1:200 K Geologic Map, and Analysis of Lobate Flow Units, Hrad Vallis, Mars





IA SCIENCE

LUNAR & PLANETARY
LABORATORY

A STATE OF THE STA



# **Geologic Context of Hrad Vallis**





## **Geologic Context of Hrad Vallis**



#### **Recent Related Publication**



- Mouginis-Mark and Wilson (2016). Possible sub-glacial eruptions in the Galaxias Quadrangle Mars. *Icarus* 267, 68 – 85.
- Good evidence that this area was once partially covered by ice - based upon current topography and flow paths.
- Galaxias Mons is of intermediate age compared to two major flow events, and that an origin as a hyaloclastite ridge is plausible (Chapman et al., 2000). Role of intrusives for this area is important.



**Galaxias Mons** 



**Galaxias Mons 2** 



## New Geological Map of the Hrad Vallis Region







Hamilton et al. (2017) – Submitted to EPSL

## **Summary**



**Aps** was emplaced as a lahar and froze to form an ice body that gradually sublimed.

Dikes were intruded into ice to form *Alr*, and were partially exhumed prior to *Apf*.

**Apf** is an inflated lava flow with lava-rise pits, not a second frozen lahar.

**Apf** was emplaced in contact with ice to form topographically inverted kipuka and steam explosions.



## Smooth Plains, Linear Ridge, and Lobate Units



## Smooth Plains, Linear Ridge, and Lobate Units



## Smooth Plains, Linear Ridge, and Lobate Units









## Lava-Rise Pleateaus within the McCartys Flow





## Lava-Rise Plateau Margins







Cross section through our finite element model showing flow velocities in a pure ice unit with an average temperature of **218** K on its equatorward-facing (southern) slopes and **212** K on its poleward-facing (northern) side. The flow velocities for the 40% ice case are 2–3% compared to pure ice case.





The mean maximum slope within the north- and south-facing quadrants differ by 1.34°, but statistically significant N–S asymmetries are not distinguishable for differences <7.18°, based on a  $1\sigma$  detection threshold.

**Blue:** Range of ice contents and ages consistent with  $1.18-1.70^{\circ}$  asymmetry (i.e., mean slope difference  $\pm 1\sigma_{e}$ )

**Red Line:** Conservative case with a detection limit of  $7.18^{\circ}$ , which is the maximum difference between the mean slopes  $\pm 1\sigma$ 

Conservatively, we conclude that if *Apf* is a frozen lahar, **then it is younger than 13.7 Ma** (if pure ice), **younger than 471.3 Ma** (if it contains 40% ice), or potentially older if it was emplaced in the debris flow regime (<40% ice).



Model runs resulting in 45 m of ice retreat for various sediment contents within ice at 36°N, which provides an upper limit of the age of 45-m-thick ice between 33-36°N.



| Ice<br>Content | Maximum Age<br>for 45-m-thick<br>ice at 33-36°N |
|----------------|-------------------------------------------------|
| 99%            | 510 ka                                          |
| 95%            | 1.87 Ma                                         |
| 90%            | 7.5 Ma                                          |
| 80%            | 13.4 Ma                                         |
| 70%            | 20.1 Ma                                         |
| 60%            | >21 Ma                                          |
| 50%            | >21 Ma                                          |



Young ages are unrealistic for ice-rich (>70% ice) units because they would sublimate away before developing detectable asymmetries by viscous flow.

Ice-poor (<70% ice) units could survive for >21 Ma, but would be expected to generate thick lag deposits, which are inconsistent with observations.

- Aps may be a sublimation lag associated with a former lahar
- Apf provides one of the best examples of an inflated pahoehoelike lava flow on Mars and a compelling candidate for interaction between a lava flow and surficial ice
- Topographic depressions within Apf are consistent with the characteristics of lava-rise pits, and need not evoke a formation mechanism involving impacts into a frozen lahar
- Aps and Apf do not appear related to the same event
- This implies that Hrad Vallis is a complex outflow channel system generated through alternating episodes of catastrophic aqueous flooding events and effusive eruptions

- Aps may be a sublimation lag associated with a former lahar
- Apf provides one of the best examples of an inflated pahoehoelike lava flow on Mars and a compelling candidate for interaction between a lava flow and surficial ice
- Topographic depressions within Apf are consistent with the characteristics of lava-rise pits, and need not evoke a formation mechanism involving impacts into a frozen lahar
- Aps and Apf do not appear related to the same event
- This implies that Hrad Vallis is a complex outflow channel system generated through alternating episodes of catastrophic aqueous flooding events and effusive eruptions

- Aps may be a sublimation lag associated with a former lahar
- Apf provides one of the best examples of an inflated pahoehoelike lava flow on Mars and a compelling candidate for interaction between a lava flow and surficial ice
- Topographic depressions within Apf are consistent with the characteristics of lava-rise pits, and need not evoke a formation mechanism involving impacts into a frozen lahar
- Aps and Apf do not appear related to the same event
- This implies that Hrad Vallis is a complex outflow channel system generated through alternating episodes of catastrophic aqueous flooding events and effusive eruptions

- Aps may be a sublimation lag associated with a former lahar
- Apf provides one of the best examples of an inflated pahoehoelike lava flow on Mars and a compelling candidate for interaction between a lava flow and surficial ice
- Topographic depressions within Apf are consistent with the characteristics of lava-rise pits, and need not evoke a formation mechanism involving impacts into a frozen lahar
- Aps and Apf do not appear related to the same event
- This implies that Hrad Vallis is a complex outflow channel system generated through alternating episodes of catastrophic aqueous flooding events and effusive eruptions

- Aps may be a sublimation lag associated with a former lahar
- Apf provides one of the best examples of an inflated pahoehoelike lava flow on Mars and a compelling candidate for interaction between a lava flow and surficial ice
- Topographic depressions within Apf are consistent with the characteristics of lava-rise pits, and need not evoke a formation mechanism involving impacts into a frozen lahar
- Aps and Apf do not appear related to the same event
- This implies that Hrad Vallis is a complex outflow channel system generated through alternating episodes of catastrophic aqueous flooding events and effusive eruptions