

Erin J. Leonard¹
D. Alex Patthoff²
Dave A. Senske³

¹University of California, Los Angeles (erinleonard@ucla.edu)

²Planetary Science Institute (apatthoff@psi.edu)

³Jet Propulsion Laboratory, California Institue of Technology (David.a.senske@jpl.nasa.gov)

USGS Map of Europa

- History
 - Doggett et al. 2009
 - Bunte et al. 2015
- This map
 - Scale of map is 1:15,000,000
 - Based generally on Bunte et al. map
 - Use USGS Basemap + Geoff Collins "Super Mosaic"
 - Galileo SSI and Voyager data

Mapping Method

- Draw GeoUnit contacts in ArcGIS 10.3
- Turn contacts into polygons (Feature to Polygon)
- Assign units to polygons

Map Units

- Chaos
 - Low Albedo Chaos
 - Mottled Chaos
 - High Albedo Chaos
 - Knobby Chaos
- Ridge
 - Low Albedo Mantling (?)
- Bands
- Ridged Plains
- Crater Units
 - Crater
 - Continuous Crater Ejecta
 - Discontinuous Crater Ejecta

- Low Albedo Chaos disrupted terrain with a relatively uniform low albedo appearance
- Mottled Chaos disrupted terrain with varying albedo, appears patchy

- Low Albedo Chaos disrupted terrain with a relatively uniform low albedo appearance
- Mottled Chaos disrupted terrain with varying albedo, appears patchy

90° E 120° E

- Mottled Chaos disrupted terrain with varying albedo, appears patchy
- High Albedo Chaos disrupted terrain with a relatively uniform high albedo

120° W

- Mottled Chaos disrupted terrain with varying albedo, appears patchy
- High Albedo Chaos disrupted terrain with a relatively uniform high albedo

120° W

 Knobby Chaos – disrupted terrain with rough and blocky texture. Occurs mostly in the high latitudes.

30° E

 Knobby Chaos – disrupted terrain with rough and blocky texture. Occurs mostly in the high latitudes.

30° E

Band Unit

 Bands – linear to curvilinear zones with an abrupt albedo change compared to the surrounding terrain. Greater than 15 km in width.

20 km

Band Unit

 Bands – linear to curvilinear zones with an abrupt albedo change compared to the surrounding terrain. Greater than 15 km in width.

Ridged Plains Unit

 Ridged Plains — terrain characterized by subparallel to cross-cutting ridges and troughs at an unresolvable scale in the global resolution images. This unit has the greatest geographical distribution of all the units.

Ridged Plains Unit

 Ridged Plains — terrain characterized by subparallel to cross-cutting ridges and troughs at an unresolvable scale in the global resolution images. This unit has the greatest geographical distribution of all the units.

Crater Units

- Crater quasi-circular topographic low with raised rim
- Continuous Crater Ejecta deposits of hummocky material around the crater
- Discontinuous Crater Ejecta deposits of high albedo material associated with crater rays

Crater Units

- Crater quasi-circular topographic low with raised rim
- Continuous Crater Ejecta deposits of hummocky material around the crater
- Discontinuous Crater Ejecta deposits of high albedo material associated with crater rays

- Examples
 - Incidence and Emission angle differences
 - Image seam mismatch
 - Resolution variety

- Examples
 - Incidence and Emission angle differences
 - Image seam mismatch
 - Resolution variety

- Examples
 - Incidence and Emission angle differences
 - Image seam mismatch
 - Resolution variety

- Examples
 - Incidence and Emission angle differences
 - Image seam mismatch
 - Resolution variety

Still To Do

- Bands vs. Ridges with Low Albedo Mantling
- Linear Features
 - Thin Bands (<15 km in width)</p>
 - Ridges
 - Cycloids
- Microchaos/Pits/Domes

Still To Do

- Bands vs. Ridges with Low Albedo Mantling
- Linear Features
 - Thin Bands (<15 km in width)</p>
 - Ridges
 - Cycloids
- Microchaos/Pits/Domes

Questions and comments are welcome!

We especially would like to thank **Trent Hare** (Map and Arc help), **Cory Fortezzohas** (Map and Arc help), **Marc Hunter** (Arc help), **Tammy Becker** (Image help) and **Geoff Collins** (SuperMosaic)

Extra Slides

Our Map

Europa

Resolution Map

North Pole

South Pole

Bunte et al. 2015 Map

Doggett et al. 2009 Map

Differences

- Chaos Subunits
- Microchaos