PHOTOMETRIC MODELING OF SIMULATED SURACE-RESOLVED BENNU IMAGES

DATHON GOLISH¹ DANIELLA DELLAGIUSTINA¹ BETH CLARK² CARINA BENNETT¹ JIAN-YANG LI³ XIAO-DUAN ZOU³ DANTE LAURETTA¹

¹LUNAR AND PLANETARY LABORATORY, UNIVERSITY OF ARIZONA ²DEPARTMENT OF PHYSICS AND ASTRONOMY, ITHACA COLLEGE ³PLANETARY SCIENCES INSTITUTE, TUCSON, AZ

OSIRIS-REX

- Launched on September 08, 2016
- Arrives at Bennu in late 2018

- OSIRIS-REx is unique in that all of its data products are driven by sample site selection
- The pace of production is also driven by the timeline to prepare for sampling
- This emphasizes the need for robust and timely creation of the products that are inputs to the selection process

- 1064 nm albedo/reflectance map
 - IPWG will generate a global mosaic with MapCam's X filter, which is extrapolated to a 1064 nm reflectance map using photometrically corrected OVIRS data
 - The reflectance map is used by the Guidance, Navigation & Control LIDARs to ensure safe descent to the surface

Hazard map

- IPWG will produce a global map indicating regions of interest and regions of exclusion on the surface
- Both the albedo and hazard maps depend on an accurate photometric model

- The observation plan and photometric modeling pipeline are tested with simulated data using planned observation kernels
- The Equatorial Stations observation campaign provides global coverage at four phase angles with MapCam in all filters

Simulated data is created using USGS ISIS

SIMULATED DATA

Limitations

- Obscurations
 - Uses single-surface ray tracing obscurations will not produce shadows
- Albedo
 - Uses one photometric model for the entire surface – i.e. no albedo variation across the surface
- Resolution
 - Uses the DSK shape model, which has a size limitation

Advantages

- Accurate
 - Produces photometrically and radiometrically accurate images
- Flexibility
 - Photometric models parameters are easily changed by editing a text file
 - New models also can be added with minimal bash/ISIS scripting
- Dynamic range
 - Images are created in 32 bits

 Evaluate the photometric coverage achieved by the observation plan as designed

PHOTOMETRIC MODELING

0.04

PHOTOMETRIC MODELING

 Though the images are simulated with Lommel-Seeliger, fitting to other common photometric models is also successful

PHOTOMETRIC MODELING

- The disk-integrated phase functions for the other models verify that they fit fairly well to the Lommel-Seeliger data
- McEwen deviates slightly at mid-phase angles, due to its two-part disk function

- Photometric correction is applied in ISIS
 - The error in correction is best judged by the uniformity of a mosaic of photometrically corrected images
 - A perfectly corrected mosaic will represent only the albedo of the surface (which is uniform), without any topography

Uncorrected

Corrected

- Additional data
 - Simulate potential contribution of additional observations during the mission to fill in gaps in the phase function

Add observations from Approach and Preliminary Survey

FUTURE WORK

- Photometric models
 - Add Akimov model to both simulation and modeling software

$$(A_{1} * e^{-\mu_{1}\alpha} + A_{2} * e^{-\mu_{2}\alpha} + A_{3} * e^{-\mu_{3}\alpha}) \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\pi}{\pi-\alpha}\left(\gamma-\frac{\alpha}{2}\right)\right)\frac{\cos(\beta)^{\frac{5\alpha}{\pi-\alpha}}}{\cos(\gamma)} \end{bmatrix}$$
Phase Function
Disk Function

FUTURE WORK

- Perturbed data
 - Simulated images are essentially perfect
 - Modeling software can be exercised by purposefully perturbing the photometric/reflectance data

- Increase fidelity of simulator
 - Simulated images are limited by resolution of DSK
 - Investigate creation of a higher resolution DEM
 - There is no albedo variation in the simulation, leading to flat photometrically corrected mosaics
 - Explore options for adding large scale albedo variations to simulation

THANKS!

BACKUP SLIDES

OSIRIS-REX CAMERA SUITE (OCAMS)

MapCam

PolyCam

SamCam

Heading