GEOMETRIC CALIBRATION OF THE CLEMENTINE UVVIS CAMERA

Third Planetary Data Workshop E. J. Speyerer, R. V. Wagner, M. S. Robinson, V. Silva Arizona State University

Clementine Mission

- Launched: 25 January 1994
- Lunar orbit: 73 Days
- Altitude: ~425 km periselene
- Six Cameras:
 - Ultraviolet/Visible (UVVIS)
 - Near-Infrared (NIR)
 - Long-Wave Infrared (LWIR)
 - High-Resolution (HIRES)
 - Two Star Trackers (ST)

Clementine UVVIS Camera

Parameter	UVVIS
Spectral filters	a: 415 ± 20 nm b: 750 ± 5 nm c: 900 ± 10 nm d: 950 ± 15 nm e: 1000 ± 15 nm f: 400 – 1000 nm
Focal length	90.15 mm
Pixel size	0.023 mm
Ground sampling distance*	115 m
Field of view	5.6° x 4.2°

Objective

The Clementine UVVIS camera captured nearly 600k images of the Moon Improve the mapping precision by deriving the interior and exterior orientation parameters for the entire UVVIS dataset

Previous UVVIS Control Networks

- Clementine Lunar Control Network (Edwards, et al., 1996)
 - 44,750 images (750 nm band)
 - No shape model
- Unified Lunar Control Network 2005 (Archinal et al., 2006)
 - Combined the Clementine control network with a previous network derived from Apollo, Mariner 10, Galileo, and Earth-based observations
 - Solved for the radii of the control points
- Derived UVVIS/NIR products have since been warped to the ULCN 2005

Since Clementine...

LRO has provided: Accurate lunar topography (WAC/LOLA) Precise knowledge of the location of lunar features LRO ephemeris derived using **GRAIL** gravity models

 Geometric calibration of LROC NAC/WAC images

ULCN2005 vs. LRO Coordinates

Updating the UVVIS Geometry

Interior Orientation (IO) Parameters

- Focal Length
- Optical Distortion (if any)
- Wavelength dependent parameters (if any)

Exterior Orientation (EO) Parameters

Mounting angles relative to spacecraft
 Pointing of instrument (per image)

Find Image Pairs

Locate WAC images with similar lighting

Pre-Process Images

Calibrate and apply a photometric correction

Match Features

Register the image pairs w/ automated feature matching

Find Image Pairs

Locate WAC images with similar lighting

Pre-Process Images

Calibrate and apply a photometric correction

Match Features

Register the image pairs w/ automated feature matching

Find Image Pairs

Locate WAC images with similar lighting

Pre-Process Images

Calibrate and apply a photometric correction

Match Features

Register the image pairs w/ automated feature matching

- Apply feature based matching (findfeatures) to locate common features in the image pairs
- Conduct sub-pixel registration of each matched feature (pointreg)

 Retrieve focal plane coordinates for each successful match (fplanemap)
 Red = WAC Image
 Cyan = UVVIS Image

Interior Orientation (IO) Parameters

- Derived the IO for each Clementine UVVIS band:
 - Effective focal length, fl
 - **\square** Radial distortion coefficient, k_2
 - Tangential distortion coef., P₁ & P₂

$$x_{d} = x_{u} \left(1 + k_{2}r^{2}\right) + P_{2} \left(r^{2} + 2x_{u}^{2}\right) + 2P_{1}x_{u}y_{u}$$
$$y_{d} = y_{u} \left(1 + k_{2}r^{2}\right) + P_{1} \left(r^{2} + 2y_{u}^{2}\right) + 2P_{2}x_{u}y_{u}$$

Radial dist. Tangential distortion

Exterior Orientation (EO) Correction

ULCN2005

This Work

Comparing CK adjustments

Current Status

- Solved the interior orientation parameters for each band
 New IK with radial and decentering distortion
- Built an automated image registration pipeline to update the camera orientation (CK) for each UVVIS image
- Producing updated CKs with the original Clementine SPKs
- Future work:
 - Generate updated CKs with updated SPKs (E. Mazarico)
 - Publish new kernels and ISIS camera model
 - Create registered multispectral maps, OMAT, and mineral maps

Questions

ULCN 2005

