CRISM MULTISPECTRAL AND HYPERSPECTRAL MAPPING DATA – OBSERVING MODES, ACCUMULATED COVERAGE, DATA PRODUCTS, AND TILE MOSAICS

3rd Planetary Data Workshop
June 12, 2017

F. Seelos, G. Romeo, C. D. Hash, S. L. Murchie, and E. C. Garhart
Frank.Seelos@jhuapl.edu
Timeline of Observing Modes: Mapping

- **2007**: Began VNIR-only observing modes (both mapping and targeted types)
- **2012**: 5x binned mode suspended
- **2015**: Hyperspectral mapping modes

MSW, MSV = 5x binned = 100 m/pix
MSP, HSV, HSP = 10x binned = 200 m/pix
Mapping Modes

100 m/pix

MultiSpectral Window (MSW)

MultiSpectral VNIR (MSV)

200 m/pix

MultiSPectral Mapping (MSP)

HyperSPectral Mapping (HSP)

HyperSPectral VNIR (HSV)

All mapping mode observations can vary in length:
- 15, 60, 180 seconds
- ~45, 180, 540 km
Summary: Current Observing Mode Spectral Sampling

number of bands:

<table>
<thead>
<tr>
<th>VNIR</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>55</td>
</tr>
<tr>
<td>107</td>
<td>154</td>
</tr>
<tr>
<td>107</td>
<td>436</td>
</tr>
</tbody>
</table>

VNIR-only modes:

HSV/FRS/ATO/ATU

MSV

90 0

Shaded areas show select zones of increased spectral sampling for HSP vs MSP/MSW in the IR.
<table>
<thead>
<tr>
<th>Class Type</th>
<th>Pixel Size (m/pxl)</th>
<th>VNIR Bands</th>
<th>IR Bands</th>
<th>Observations [Target IDs]</th>
<th>VNIR Segments</th>
<th>IR Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP</td>
<td>~200</td>
<td>19</td>
<td>55</td>
<td>40564</td>
<td>61752</td>
<td>61834</td>
</tr>
<tr>
<td>MSW</td>
<td>~100</td>
<td>19</td>
<td>55</td>
<td>2557</td>
<td>2565</td>
<td>2562</td>
</tr>
<tr>
<td>HSP</td>
<td>~200</td>
<td>107</td>
<td>154</td>
<td>15981</td>
<td>19578</td>
<td>19635</td>
</tr>
<tr>
<td>HSV</td>
<td>~200</td>
<td>107</td>
<td>N/A</td>
<td>41008</td>
<td>61571</td>
<td>N/A</td>
</tr>
<tr>
<td>MSV</td>
<td>~100</td>
<td>90</td>
<td>N/A</td>
<td>33874</td>
<td>47026</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total: 133984</td>
<td>192492</td>
<td>84031</td>
</tr>
</tbody>
</table>

EDR archive

Segment Total: 276523
(03/20/2017)
• MSP is the only mapping mode that has been active for the duration of the MRO mission
• Structure of the MSP observation count as a function of latitude and time plot highlights:
 • Mapping exclusion zones
 • Evolving CRISM mission priorities
 • S/C safing events
 • CRISM cryosystem status
• Geometric seasonal dependence
IR HSP MRO/CRISM Mission History

- HSP acquired in tandem with MSP since mid-2011
- Preferred mode for tracking southern seasonal polar cap recession
- Focused acquisition for high priority regions
MSV has been the dominant VNIR-only mapping mode since its inception in early 2012.
IR MRDR (MSP/HSP) Data Accumulation

- MSP/HSP class type observations are the source data for Multispectral Reduced Data Record (MRDR) map tiles
MSP/HSP class type observations are the source data for Multispectral Reduced Data Record (MRDR) map tiles.
IR Mapping Coverage Example

MSP: Blue
HSP: Green
MSW: Red
MRDR Data Processing Workflow

- MSP TRR3 I/F
- MSP Data Filtering
- RT Transform
- Radiometric Reconciliation
- MSP TRR3 Filtered I/F
- MSP TRR3 I/F*
- MSP DDR1 DE
- Calculate Parameters
- MSP TRR3 Balanced I/F*
- MSP I/F* Parameters
- MSP I/F* Browse
- Map Tile Assembly

Space Exploration

APL
Radiometric Reconciliation - MTRDR Mosaic Heritage

Optimization Reference FRT000047A3

Optimization Reference FRT000047A3

B

MTDR Mosaic Optimization – Weighted Product Chi-Square

\[\chi^2 \text{ (Product Index)} = 1189.44\]

C

D
MSP Empirical Radiometric Reconciliation
Jezero Crater Example – TOA @ 770 nm

CRISM MSP, HSP, HSV
Jezero Crater mosaic (770 nm) prior to inter-observation optimization. Observations stacked in acquisition order.

CRISM MSP, HSP, HSV
Jezero Crater mosaic (770 nm) after inter-observation optimization. Observations stacked in acquisition order.

CRISM ~200 m/pixel VNIR mapping observation coverage count map for the Jezero Crater Mars 2020 candidate landing site (linear stretch over the interval [0,7]).

\[X' = P[0] + P[1] \times X^P[2] \]

Non-linear least squares
Overlap Area CDF Optimization
CRISM VNIR ~200 m/pixel Mapping
Proximal Optimization - Nili Fossae

$X' = P[0] + P[1](\bar{X} - X) + \bar{X}$

- Linear least squares
- Proximal Relationship Distribution
- Centroid and Spread Optimization

$P[0]$ and $P[1]$ Independent
Mapping Mosaic Prototype Product Example – Margaritifer Terra (Kim’s PGMM Talk)
Current Framework and Mapping Mosaic Products

- Production Configuration:
 - Composite optimization figure of merit:
 - Overlap area nonlinear CDF discrepancy buttressed by proximal relationship summary statistics discrepancy
 - Implemented by relationship type weighting and/or selection
 - Graph theory (adjacency matrix) provides insight into mosaic connectivity and constituent observation ‘importance’

- MRDR Map Tiles
 - I/F* (RT corrected spectral reflectance)
 - Empirical correction of RT residuals

- MSV Map Tiles
 - I/F TOA
 - Relative atmospheric (and photometric) correction

- Coverage and Connectivity
 - Can’t have too many mapping strips!

- Multispectral Reduced Data Records (MRDR Map Tiles):
 - ~200 m/pixel
 - VNIR + IR
 - 72 channels
 - MSP, HSP
 - CRISM PDS standard data product suite

- Hyperspectral Survey Study Area Mosaics:
 - ~200 m/pixel
 - VNIR + IR
 - 259 channels
 - HSP

- MSV Map Tiles
 - ~100 m/pixel
 - VNIR
 - 89 channels
 - MSV
 - EM4 Priority

- Custom local/regional mosaic products
 - Candidate landing sites
 - Regional mapping projects
 - Variable wavelength range and channel selection