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	 Elevation (meters)
Minimum	 –7244
Maximum	 6178
Mean	 –1163
Standard Deviation	 1110
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Minimum	 –9889
Maximum	 8193
Mean	 492
Standard Deviation	 1658
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ELEVATION, IN METERS
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	 Minimum	 Maximum	 Count	 Percent

	 –10000	 –9500	 273	 0.00%
	 –9500	 –9000	 751	 0.00%
	 –9000	 –8500	 1,464	 0.01%
	 –8500	 –8000	 2,878	 0.01%
	 –8000	 –7500	 4,541	 0.02%
	 –7500	 –7000	 8,761	 0.03%
	 –7000	 –6500	 38,139	 0.14%
	 –6500	 –6000	 52,984	 0.20%
	 –6000	 –5500	 146,902	 0.56%
	 –5500	 –5000	 462,020	 1.75%
	 –5000	 –4500	 509,121	 1.93%
	 –4500	 –4000	 528,390	 2.00%
	 –4000	 –3500	 537,160	 2.03%
	 –3500	 –3000	 639,641	 2.42%
	 –3000	 –2500	 663,684	 2.51%
	 –2500	 –2000	 722,275	 2.73%
	 –2000	 –1500	 1,023,300	 3.87%
	 –1500	 –1000	 1,573,795	 5.95%
	 –1000	 –500	 2,176,308	 8.23%
	 –500	 0	 2,091,301	 7.91%
	 0	 500	 1,854,489	 7.01%
	 500	 1000	 1,899,223	 7.18%
	 1000	 1500	 1,918,159	 7.25%
	 1500	 2000	 1,816,072	 6.87%
	 2000	 2500	 1,773,185	 6.71%
	 2500	 3000	 1,521,749	 5.76%
	 3000	 3500	 1,125,359	 4.26%
	 3500	 4000	 856,299	 3.24%
	 4000	 4500	 761,785	 2.88%
	 4500	 5000	 619,379	 2.34%
	 5000	 5500	 443,699	 1.68%
	 5500	 6000	 318,252	 1.20%
	 6000	 6500	 238,315	 0.90%
	 6500	 7000	 80,376	 0.30%
	 7000	 7500	 23,240	 0.09%
	 7500	 8000	 6,218	 0.02%
	 8000	 8500	 1,463	 0.01%
	 8500	 9000
	 9000	 9500
	 9500	 10000

	 Minimum	 Maximum	 Count	 Percent

	 –10000	 –9500
	 –9500	 –9000
	 –9000	 –8500
	 –8500	 –8000
	 –8000	 –7500
	 –7500	 –7000	 31	 0.00%
	 –7000	 –6500	 304	 0.00%
	 –6500	 –6000	 760	 0.00%
	 –6000	 –5500	 3,226	 0.01%
	 –5500	 –5000	 8,512	 0.03%
	 –5000	 –4500	 7,364	 0.03%
	 –4500	 –4000	 54,040	 0.20%
	 –4000	 –3500	 233,596	 0.89%
	 –3500	 –3000	 297,377	 1.13%
	 –3000	 –2500	 1,842,080	 6.99%
	 –2500	 –2000	 3,422,630	 12.98%
	 –2000	 –1500	 4,893,310	 18.56%
	 –1500	 –1000	 5,207,304	 19.75%
	 –1000	 –500	 4,080,234	 15.48%
	 –500	 0	 2,665,361	 10.11%
	 0	 500	 1,545,859	 5.86%
	 500	 1000	 1,019,491	 3.87%
	 1000	 1500	 539,764	 2.05%
	 1500	 2000	 291,199	 1.10%
	 2000	 2500	 143,507	 0.54%
	 2500	 3000	 62,633	 0.24%
	 3000	 3500	 26,652	 0.10%
	 3500	 4000	 10,602	 0.04%
	 4000	 4500	 4,440	 0.02%
	 4500	 5000	 2,616	 0.01%
	 5000	 5500	 1,260	 0.00%
	 5500	 6000	 539	 0.00%
	 6000	 6500	 131	 0.00%
	 6500	 7000
	 7000	 7500
	 7500	 8000
	 8000	 8500
	 8500	 9000
	 9000	 9500
	 9500	 10000

Elevation values for the far side hemisphere 
binned in increments of 500 meters. Count is 
number of elevation posts within the bin. Per-
cent is count for indicated elevation values 
divided by total count.

Elevation values for the near side hemisphere 
binned in increments of 500 meters. Count is 
number of elevation posts within the bin. Per-
cent is count for indicated elevation values 
divided by total count.

NOTES ON BASE
This sheet is one in a series of topographic maps that presents color-
coded topographic data digitally merged with shaded relief data.

ADOPTED FIGURE

The figure for the Moon, used for the computation of the map projec-
tion, is a sphere with a radius of 1737.4 km (Seidelmann and others, 
2002). Because the Moon has no surface water, and hence no sea level, 
the datum (the 0 km contour) for elevations is defined as the radius of 
1737.4 km. Coordinates are based on the mean Earth/polar axis (M.E.) 
coordinates system, the z axis is the axis of the Moon’s rotation, and 
the x axis is the mean Earth direction. The center of mass is the origin 
of the coordinate system (Davies and Colvin, 2000). The equator lies in 
the x–y plane and the prime meridian lies in the x–z plane with east 
longitude values being positive.

PROJECTION

The projection is Lambert Azimuthal Equal Area Projection. The scale 
factor at the central latitude and central longitude point is 1:10,000,000. 
For the near side hemisphere the central latitude and central longitude 
point is at 0° and 0°. For the far side hemisphere the central latitude and 
central longitude point is at 0° and 180°.

CONTROL

The original control for the shaded relief maps was based on horizontal 
control tied to either the Lunar Positional Reference of 1974 (Schimer-
man, 1975) or the Apollo control system of 1973. Positional discrepan-
cies as large as 25 km at map scale existed in the original shaded relief 
base. To improve the accuracy, digital shaded relief data were aligned 
with a mosaic produced from Clementine 750 nm images (Eliason, 
1997, Isbell and others, 1997, Eliason and others, 1999). This align-
ment process consisted of picking features (commonly called match or 
tie points) that were visible in both the shaded relief data and the Clem-
entine mosaic. To accomplish this, the files were divided into three 
areas: north pole, equatorial region, and south pole. They were aligned 
first in the equatorial region and then in the polar regions. Within the 
equatorial region, an area extending from 60° S. to 60° N., approxi-
mately 1000 points were picked. Within the north polar region, an area 
from 57° N. to 90° N., approximately 1900 points were picked. Within 
the south polar region, an area from 57° S. to 90° S., approximately 
1100 points were picked. These points were used to warp the shaded 
relief map to match the Clementine mosaic. The Clementine mosaic has 
a positional accuracy of 500 m (1/60°) (Eliason and others, 1999).

Vertical control is based on measurements from the Clementine laser 
altimeter that collected data between 79° S. and 81° N. The along-track 
spacing of these measurements varied: over some smooth mare surfaces 
an along-track spacing of 20 km was achieved; where the instrument 
lost lock over rough highland terrain, the spacing degraded to 100 km. 

The across-track spacing was based on the orbital ground track and is 
approximately 60 km (2°) at the equator. Elevation values were col-
lected at 72,548 points by the Clementine laser altimeter. The estimated 
vertical accuracy of points collected by the Clementine laser altimeter 
is 130 m (Smith and others, 1997).

The Clementine laser altimeter did not collect data over the lunar north 
or south pole. Therefore, topographic data were collected photogram-
metrically to fill in these gaps. The image sources were the oblique and 
nadir 750 nm images collected by the Clementine UVVIS camera (Ro-
siek and others, 1998). Vertical control, for the photogrammetric data, 
was established by using the Clementine laser altimeter data at the 
outer edge of these circular polar areas, and the imagery was used to 
bridge control and fill in the central part of the circle (Rosiek and oth-
ers, 2001). The expected precision of points collected photogrammetri-
cally is 180 m (Rosiek and others, 1998). Further discussion of the 
photogrammetric topographic data can be found in the topographic data 
section below.

IMAGE BASE

The shaded relief data were originally published as a series of 1:5 mil-
lion shaded relief maps. This series included three U.S. Geological Sur-
vey maps: I–1218–B, Shaded Relief Map of the Lunar Far Side, 1980; 
I–1326–A, Shaded Relief Map of the Lunar Polar Regions, 1981; and 
I–2276, Sheet 2 of 2, Shaded Relief Map of the Lunar Near Side, 1992. 
These data were digitized and mosaicked into a single digital file. An 
area of approximately 500,000 km2 near the south pole was not visible 
in any pre-Clementine images and is blank on the published map. The 
digitized relief base was revised based on the Clementine mosaic and 
recent Earth-based radar imagery (Margot and others, 1999) to show 
features in this area. Errors that were present in the original interpreta-
tions of lunar morphology have not been corrected in the digital version 
of the warped shaded relief map base. These original errors were 
caused by scanty data, ambiguities introduced by highly oblique solar 
incidence angles, and distortions created in generating orthophoto-
graphs from oblique images (Rosiek and Aeschliman, 2001).

TOPOGRAPHIC DATA

The Clementine laser altimeter points were interpolated to create a 
global topographic gridded digital terrain model for the lunar surface. 
Because the altimeter points were sparser near the poles and non-exis-
tent over the poles in this digital terrain model, only data between 75° 
S. and 75° N. were used in the final digital terrain model. To fill in the 
polar regions, topographic data were collected photogrammetrically 
from Clementine 750 nm oblique and nadir images.

For the photogrammetric analysis, horizontal control was established 
by selecting some of the match points that were used in building the 
Clementine global mosaic. These points provided estimates for latitude 
and longitude values, but no estimate for elevation values. Vertical con-

trol was established by using the global topographic gridded digital ter-
rain model developed from the Clementine laser altimeter points to 
estimate elevation values for the Clementine match points. To improve 
the geometry of the control network for the photogrammetric analysis, 
the Clementine match points, which were selected to tie two images 
together in order to build the Clementine global mosaic, were transfer-
red to all images that contained the point. Additional points were 
selected to have four well-distributed points per image, where possible. 
Analytical areotriangulation, a weighted least squares process, is used 
to solve for all the parameters of the photogrammetric project. These 
parameters include image sensor position and angles; latitude, longi-
tude, and elevation of match points; and image coordinates of match 
points. Adjusting the weight assigned to a parameter determines 
whether values with high weight are held to the original estimate or val-
ues with low weight are allowed to float and a new value determined 
for the parameter. The parameters with the most error in their original 
estimate for their values are the image sensor angles, so they are given 
a low weight. The latitude and longitude values of Clementine match 
points are given a high weight so the solution holds to the Clementine 
global mosaic horizontal coordinates. Weights for the elevation values 
are varied depending on the horizontal distance to a Clementine laser 
altimeter point: match points within 2000 m of a Clementine laser 
altimeter point are given a high weight; match points between 2000 m 
and 5000 m from a Clementine laser altimeter point are given a 
medium weight; and match points greater than 5000 m from a Clemen-
tine laser altimeter point are given a low weight. This weighting allows 
the vertical control to be bridged between areas of known vertical con-
trol (the area covered by Clementine laser altimeter measurements) and 
the areas void of control (the area over the poles).

The Clementine mission collected both oblique and vertical images 
over the polar regions; these images form stereo pairs that can be used 
photogrammetrically to collect topographic data. In the north pole 
region (90° N. to 64° N. latitude) data were collected from 640 stereo 
models. Over the south pole region (90° S. to 63° S. latitude) topo-
graphic data were collected from 667 stereo models. Topographic data 
were collected within each stereo model with an elevation post spacing 
of 1 km in the x and y directions. This spacing resulted in 1,437,368 
points being collected in the north pole region and 1,724,872 points 
being collected in the south pole region. On average, over the area that 
data were collected (79° S. and 81° N.), the Clementine laser altimeter 
collected an elevation value for every 514 km2; and the photogrammet-
ric data collected an elevation value for every 1.3 km2 in the north pole 
and 1.2 km2 in the south pole. The photogrammetric data were merged 
and vertically transformed to align with the Clementine laser altimeter 
data to form the final digital terrain model (Rosiek and others, 2001).

Merging the topographic data required an iterative process to reduce the 
error between the photogrammetric data and the topographic data 

derived from the Clementine laser altimeter data. At first the photo-
grammetric topographic data exhibited a systematic stair-step error, in 
that stereo models closer to the poles had a systematic bias to be higher 
than stereo models farther from the poles. When this bias was removed, 
the resulting digital terrain model had a bowl-shape appearance with a 
low spot near the pole. Each stereo model was tilted to remove the bowl 
shape: for stereo models in the north pole area this was 800 m per 
degree and for stereo models in the south pole area this was 1 km per 
degree. To fit the stereo models to the Clementine laser altimeter data, 
an initial set of stereo models that overlaid the Clementine laser altime-
ter data was adjusted to vertically align with the Clementine laser altim-
eter data. Stereo models that overlaid the previously adjusted stereo 
models were adjusted further, this process continued until all stereo 
models were adjusted to align vertically.

In analyzing the photogrammetric data for the north pole region, 
1,189,935 points (83% of the data) occur on two or more stereo models. 
For 90% of those points, the standard deviation in elevation is between 
24 and 409 m, with a mean of 184 m. In the south pole region, 
1,262,349 points (73% of the data) occur on two or more stereo models. 
For 90% of those points, the standard deviation in elevation is between 
13 and 395 m, with a mean of 160 m.

In the north pole region 1,276 Clementine laser altimeter points are in 
the area where photogrammetric topographic data were collected. 
Comparing the photogrammetric topographic data with the Clementine 
laser altimeter points shows that for the north pole region the stereo 
topographic data is an average of 46 m higher than the Clementine 
laser altimeter points, with a standard deviation of 719 m. In the south 
pole region, 1,379 Clementine laser altimeter points are in the area 
where photogrammetric topographic data were collected. For the south 
pole region the stereo topographic data is an average of 163 m lower 
than the Clementine laser altimeter points, with a standard deviation of 
1005 m.

The merged topographic data were color-coded and combined with the 
shaded relief data. Areas where no topographic data were collected are 
not color-coded, and the shaded relief image is shown as gray scale.

NOMENCLATURE

The number, size, and placement of text annotations were chosen to 
provide a general orientation of conspicuous features on a 
1:10,000,000-scale map. Features are labeled with names approved by 
the International Astronomical Union (for a complete list of lunar 
nomenclature, see http://planetarynames.wr.usgs.gov).

L 10M 0/0 180 RTK:	  Abbreviation for Moon; 1:10,000,000 series; 
center of maps: 0° latitude and 0° longitude 
for near side hemisphere, and 0° latitude and 
180° longitude for far side hemisphere; 
shaded relief (R) with topographic data and 

nomenclature (T) and color-coded topo-
graphic data (K) (Greeley and Batson, 1990).

OTHER SOURCES OF LUNAR ELEVATION DATA

Two other recent sources of lunar elevation data are from work done by 
Dr. Tony Cook of the National Air and Space Museum and by Dr. Jean-
Luc Margot while at Cornell University. The elevation data collected by 
Dr. Cook is derived from overlapping Clementine images from the 
same orbit. This method provides a larger set of images to use in col-
lecting topographic data. Elevation values that are collected are relative 
to each other and are not known in an absolute sense relative to some 
datum. To provide an estimate of the absolute height, the elevation val-
ues are matched to the Clementine altimetry data and to elevation val-
ues previously collected where Clementine altimetry does not exist. 
Traditional photogrammetric solutions employ a least squares method 
to distribute the error throughout the model, whereas the method 
employed by Dr. Cook aligns the derived data with the Clementine 
altimetry data where it exists and in areas where there is no data the rel-
ative elevation measurements are aligned with previous aligned data 
until the area is connected back with Clementine data. The error in 
unknown areas is unconstrained, but the method does close back to an 
area with known elevation values, which constrains the error at the 
starting and ending spots (Cook and others 2000).

The elevation data collected by Dr. Margot is derived from radar inter-
ferometry using the Goldstone radar. Over the polar region, five images 
were collected and mosaicked together. To collect elevation informa-
tion, the radar signal is sent from one antenna and is received by at least 
two antennas. The phase difference in the received signal from the two 
radar sites provides information about the elevation. The elevation 
information derived from radar interferometry is relative and requires 
the use of the Clementine altimetry points to provide absolute elevation 
information relative to a datum (Margot and others 1999, 2000).
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T

	 Minimum	 Maximum	 Count	 Percent

	 –10000	 –9500	 169	 0.00%
	 –9500	 –9000	 518	 0.00%
	 –9000	 –8500	 826	 0.00%
	 –8500	 –8000	 2,380	 0.01%
	 –8000	 –7500	 4,147	 0.02%
	 –7500	 –7000	 7,745	 0.03%
	 –7000	 –6500	 35,531	 0.13%
	 –6500	 –6000	 48,612	 0.18%
	 –6000	 –5500	 110,030	 0.42%
	 –5500	 –5000	 348,543	 1.32%
	 –5000	 –4500	 336,699	 1.28%
	 –4500	 –4000	 380,951	 1.44%
	 –4000	 –3500	 297,586	 1.13%
	 –3500	 –3000	 277,757	 1.05%
	 –3000	 –2500	 998,766	 3.78%
	 –2500	 –2000	 2,426,804	 9.20%
	 –2000	 –1500	 3,131,526	 11.87%
	 –1500	 –1000	 2,819,781	 10.69%
	 –1000	 –500	 2,223,878	 8.43%
	 –500	 0	 1,744,190	 6.61%
	 0	 500	 1,491,147	 5.65%
	 500	 1000	 1,428,808	 5.41%
	 1000	 1500	 1,138,869	 4.32%
	 1500	 2000	 1,034,507	 3.92%
	 2000	 2500	 1,072,031	 4.06%
	 2500	 3000	 1,062,262	 4.03%
	 3000	 3500	 826,748	 3.13%
	 3500	 4000	 701,355	 2.66%
	 4000	 4500	 723,026	 2.74%
	 4500	 5000	 605,993	 2.30%
	 5000	 5500	 441,706	 1.67%
	 5500	 6000	 317,694	 1.20%
	 6000	 6500	 237,941	 0.90%
	 6500	 7000	 80,408	 0.30%
	 7000	 7500	 23,217	 0.09%
	 7500	 8000	 6,233	 0.02%
	 8000	 8500	 1,459	 0.01%
	 8500	 9000
	 9000	 9500
	 9500	 10000
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Histogram of elevation values for east hemisphere

ELEVATION IN METERS

	 Minimum	 Maximum	 Count	 Percent

	 –10000	 –9500	 119	 0.00%
	 –9500	 –9000	 238	 0.00%
	 –9000	 –8500	 635	 0.00%
	 –8500	 –8000	 473	 0.00%
	 –8000	 –7500	 372	 0.00%
	 –7500	 –7000	 1,054	 0.00%
	 –7000	 –6500	 2,913	 0.01%
	 –6500	 –6000	 5,157	 0.02%
	 –6000	 –5500	 40,190	 0.15%
	 –5500	 –5000	 122,138	 0.46%
	 –5000	 –4500	 179,836	 0.68%
	 –4500	 –4000	 201,306	 0.76%
	 –4000	 –3500	 472,307	 1.79%
	 –3500	 –3000	 659,066	 2.50%
	 –3000	 –2500	 1,507,604	 5.71%
	 –2500	 –2000	 1,716,181	 6.50%
	 –2000	 –1500	 2,782,187	 10.54%
	 –1500	 –1000	 3,956,635	 14.99%
	 –1000	 –500	 4,027,048	 15.26%
	 –500	 0	 3,006,987	 11.39%
	 0	 500	 1,907,225	 7.23%
	 500	 1000	 1,489,551	 5.64%
	 1000	 1500	 1,319,180	 5.00%
	 1500	 2000	 1,073,012	 4.07%
	 2000	 2500	 845,010	 3.20%
	 2500	 3000	 522,506	 1.98%
	 3000	 3500	 325,416	 1.23%
	 3500	 4000	 165,767	 0.63%
	 4000	 4500	 43,277	 0.16%
	 4500	 5000	 16,225	 0.06%
	 5000	 5500	 3,231	 0.01%
	 5500	 6000	 1,113	 0.00%
	 6000	 6500	 524	 0.00%
	 6500	 7000
	 7000	 7500
	 7500	 8000
	 8000	 8500
	 8500	 9000
	 9000	 9500
	 9500	 10000
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	 Elevation (meters)
Minimum	 –9889
Maximum	 8192
Mean	 1
Standard Deviation	 2582

	 Elevation (meters)
Minimum	 –9726
Maximum	 6401
Mean	 –669
Standard Deviation	 1658

Elevation values for the east hemisphere bin-
ned in increments of 500 meters. Count is 
number of elevation posts within the bin. Per-
cent is count for indicated elevation values 
divided by total count.

Elevation values for the west hemisphere bin-
ned in increments of 500 meters. Count is 
number of elevation posts within the bin. Per-
cent is count for indicated elevation values 
divided by total count.
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NOTES ON BASE
This sheet is one in a series of topographic maps that presents color-
coded topographic data digitally merged with shaded relief data.

ADOPTED FIGURE

The figure for the Moon, used for the computation of the map projec-
tion, is a sphere with a radius of 1737.4 km (Seidelmann and others, 
2002). Because the Moon has no surface water, and hence no sea level, 
the datum (the 0 km contour) for elevations is defined as the radius of 
1737.4 km. Coordinates are based on the mean Earth/polar axis (M.E.) 
coordinates system, the z axis is the axis of the Moon’s rotation, and 
the x axis is the mean Earth direction. The center of mass is the origin 
of the coordinate system (Davies and Colvin, 2000). The equator lies in 
the x–y plane and the prime meridian lies in the x–z plane with east 
longitude values being positive.

PROJECTION

The projection is Lambert Azimuthal Equal Area Projection. The scale 
factor at the central latitude and central longitude point is 1:10,000,000. 
For the west side hemisphere the central latitude and central longitude 
point is at 0° and 90° west. For the east side hemisphere the central lati-
tude and central longitude point is at 0° and 90° east.

CONTROL

The original control for the shaded relief maps was based on horizontal 
control tied to either the Lunar Positional Reference of 1974 (Schimer-
man, 1975) or the Apollo control system of 1973. Positional discrepan-
cies as large as 25 km at map scale existed in the original shaded relief 
base. To improve the accuracy, digital shaded relief data were aligned 
with a mosaic produced from Clementine 750 nm images (Eliason, 
1997, Isbell and others, 1997, Eliason and others, 1999). This align-
ment process consisted of picking features (commonly called match or 
tie points) that were visible in both the shaded relief data and the Clem-
entine mosaic. To accomplish this, the files were divided into three 
areas: north pole, equatorial region, and south pole. They were aligned 
first in the equatorial region and then in the polar regions. Within the 
equatorial region, an area extending from 60° S. to 60° N., approxi-
mately 1000 points were picked. Within the north polar region, an area 
from 57° N. to 90° N., approximately 1900 points were picked. Within 
the south polar region, an area from 57° S. to 90° S., approximately 
1100 points were picked. These points were used to warp the shaded 
relief map to match the Clementine mosaic. The Clementine mosaic has 
a positional accuracy of 500 m (1/60°) (Eliason and others, 1999).

Vertical control is based on measurements from the Clementine laser 
altimeter that collected data between 79° S. and 81° N. The along-track 
spacing of these measurements varied: over some smooth mare surfaces 
an along-track spacing of 20 km was achieved; where the instrument 
lost lock over rough highland terrain, the spacing degraded to 100 km. 

The across-track spacing was based on the orbital ground track and is 
approximately 60 km (2°) at the equator. Elevation values were col-
lected at 72,548 points by the Clementine laser altimeter. The estimated 
vertical accuracy of points collected by the Clementine laser altimeter 
is 130 m (Smith and others, 1997).

The Clementine laser altimeter did not collect data over the lunar north 
or south pole. Therefore, topographic data were collected photogram-
metrically to fill in these gaps. The image sources were the oblique and 
nadir 750 nm images collected by the Clementine UVVIS camera (Ro-
siek and others, 1998). Vertical control, for the photogrammetric data, 
was established by using the Clementine laser altimeter data at the 
outer edge of these circular polar areas, and the imagery was used to 
bridge control and fill in the central part of the circle (Rosiek and oth-
ers, 2001). The expected precision of points collected photogrammetri-
cally is 180 m (Rosiek and others, 1998). Further discussion of the 
photogrammetric topographic data can be found in the topographic data 
section below.

IMAGE BASE

The shaded relief data were originally published as a series of 1:5 mil-
lion shaded relief maps. This series included three U.S. Geological Sur-
vey maps: I–1218–B, Shaded Relief Map of the Lunar Far Side, 1980; 
I–1326–A, Shaded Relief Map of the Lunar Polar Regions, 1981; and 
I–2276, Sheet 2 of 2, Shaded Relief Map of the Lunar Near Side, 1992. 
These data were digitized and mosaicked into a single digital file. An 
area of approximately 500,000 km2 near the south pole was not visible 
in any pre-Clementine images and is blank on the published map. The 
digitized relief base was revised based on the Clementine mosaic and 
recent Earth-based radar imagery (Margot and others, 1999) to show 
features in this area. Errors that were present in the original interpreta-
tions of lunar morphology have not been corrected in the digital version 
of the warped shaded relief map base. These original errors were 
caused by scanty data, ambiguities introduced by highly oblique solar 
incidence angles, and distortions created in generating orthophoto-
graphs from oblique images (Rosiek and Aeschliman, 2001).

TOPOGRAPHIC DATA

The Clementine laser altimeter points were interpolated to create a 
global topographic gridded digital terrain model for the lunar surface. 
Because the altimeter points were sparser near the poles and non-exis-
tent over the poles in this digital terrain model, only data between 75° 
S. and 75° N. were used in the final digital terrain model. To fill in the 
polar regions, topographic data were collected photogrammetrically 
from Clementine 750 nm oblique and nadir images.

For the photogrammetric analysis, horizontal control was established 
by selecting some of the match points that were used in building the 
Clementine global mosaic. These points provided estimates for latitude 
and longitude values, but no estimate for elevation values. Vertical con-

trol was established by using the global topographic gridded digital ter-
rain model developed from the Clementine laser altimeter points to 
estimate elevation values for the Clementine match points. To improve 
the geometry of the control network for the photogrammetric analysis, 
the Clementine match points, which were selected to tie two images 
together in order to build the Clementine global mosaic, were transfer-
red to all images that contained the point. Additional points were 
selected to have four well-distributed points per image, where possible. 
Analytical areotriangulation, a weighted least squares process, is used 
to solve for all the parameters of the photogrammetric project. These 
parameters include image sensor position and angles; latitude, longi-
tude, and elevation of match points; and image coordinates of match 
points. Adjusting the weight assigned to a parameter determines 
whether values with high weight are held to the original estimate or val-
ues with low weight are allowed to float and a new value determined 
for the parameter. The parameters with the most error in their original 
estimate for their values are the image sensor angles, so they are given 
a low weight. The latitude and longitude values of Clementine match 
points are given a high weight so the solution holds to the Clementine 
global mosaic horizontal coordinates. Weights for the elevation values 
are varied depending on the horizontal distance to a Clementine laser 
altimeter point: match points within 2000 m of a Clementine laser 
altimeter point are given a high weight; match points between 2000 m 
and 5000 m from a Clementine laser altimeter point are given a 
medium weight; and match points greater than 5000 m from a Clemen-
tine laser altimeter point are given a low weight. This weighting allows 
the vertical control to be bridged between areas of known vertical con-
trol (the area covered by Clementine laser altimeter measurements) and 
the areas void of control (the area over the poles).

The Clementine mission collected both oblique and vertical images 
over the polar regions; these images form stereo pairs that can be used 
photogrammetrically to collect topographic data. In the north pole 
region (90° N. to 64° N. latitude) data were collected from 640 stereo 
models. Over the south pole region (90° S. to 63° S. latitude) topo-
graphic data were collected from 667 stereo models. Topographic data 
were collected within each stereo model with an elevation post spacing 
of 1 km in the x and y directions. This spacing resulted in 1,437,368 
points being collected in the north pole region and 1,724,872 points 
being collected in the south pole region. On average, over the area that 
data were collected (79° S. and 81° N.), the Clementine laser altimeter 
collected an elevation value for every 514 km2; and the photogrammet-
ric data collected an elevation value for every 1.3 km2 in the north pole 
and 1.2 km2 in the south pole. The photogrammetric data were merged 
and vertically transformed to align with the Clementine laser altimeter 
data to form the final digital terrain model (Rosiek and others, 2001).

Merging the topographic data required an iterative process to reduce the 
error between the photogrammetric data and the topographic data 

derived from the Clementine laser altimeter data. At first the photo-
grammetric topographic data exhibited a systematic stair-step error, in 
that stereo models closer to the poles had a systematic bias to be higher 
than stereo models farther from the poles. When this bias was removed, 
the resulting digital terrain model had a bowl-shape appearance with a 
low spot near the pole. Each stereo model was tilted to remove the bowl 
shape: for stereo models in the north pole area this was 800 m per 
degree and for stereo models in the south pole area this was 1 km per 
degree. To fit the stereo models to the Clementine laser altimeter data, 
an initial set of stereo models that overlaid the Clementine laser altime-
ter data was adjusted to vertically align with the Clementine laser altim-
eter data. Stereo models that overlaid the previously adjusted stereo 
models were adjusted further, this process continued until all stereo 
models were adjusted to align vertically.

In analyzing the photogrammetric data for the north pole region, 
1,189,935 points (83% of the data) occur on two or more stereo models. 
For 90% of those points, the standard deviation in elevation is between 
24 and 409 m, with a mean of 184 m. In the south pole region, 
1,262,349 points (73% of the data) occur on two or more stereo models. 
For 90% of those points, the standard deviation in elevation is between 
13 and 395 m, with a mean of 160 m.

In the north pole region 1,276 Clementine laser altimeter points are in 
the area where photogrammetric topographic data were collected. 
Comparing the photogrammetric topographic data with the Clementine 
laser altimeter points shows that for the north pole region the stereo 
topographic data is an average of 46 m higher than the Clementine 
laser altimeter points, with a standard deviation of 719 m. In the south 
pole region, 1,379 Clementine laser altimeter points are in the area 
where photogrammetric topographic data were collected. For the south 
pole region the stereo topographic data is an average of 163 m lower 
than the Clementine laser altimeter points, with a standard deviation of 
1005 m.

The merged topographic data were color-coded and combined with the 
shaded relief data. Areas where no topographic data were collected are 
not color-coded, and the shaded relief image is shown as gray scale.

NOMENCLATURE

The number, size, and placement of text annotations were chosen to 
provide a general orientation of conspicuous features on a 
1:10,000,000-scale map. Features are labeled with names approved by 
the International Astronomical Union (for a complete list of lunar 
nomenclature, see http://planetarynames.wr.usgs.gov ).

L 10M 0/±90 RTK:	   Abbreviation for Moon; 1:10,000,000 series; cen-
ter of maps: 0° latitude and 90° west longitude 
for west hemisphere, and 0° latitude and 90° east 
longitude for east hemisphere; shaded relief (R) 
with topographic data and nomenclature (T) and 

color-coded topographic data (K) (Greeley and 
Batson, 1990).

OTHER SOURCES OF LUNAR ELEVATION DATA

Two other recent sources of lunar elevation data are from work done by 
Dr. Tony Cook of the National Air and Space Museum and by Dr. Jean-
Luc Margot while at Cornell University. The elevation data collected by 
Dr. Cook is derived from overlapping Clementine images from the 
same orbit. This method provides a larger set of images to use in col-
lecting topographic data. Elevation values that are collected are relative 
to each other and are not known in an absolute sense relative to some 
datum. To provide an estimate of the absolute height, the elevation val-
ues are matched to the Clementine altimetry data and to elevation val-
ues previously collected where Clementine altimetry does not exist. 
Traditional photogrammetric solutions employ a least squares method 
to distribute the error throughout the model, whereas the method 
employed by Dr. Cook aligns the derived data with the Clementine 
altimetry data where it exists and in areas where there is no data the rel-
ative elevation measurements are aligned with previous aligned data 
until the area is connected back with Clementine data. The error in 
unknown areas is unconstrained, but the method does close back to an 
area with known elevation values, which constrains the error at the 
starting and ending spots (Cook and others 2000).

The elevation data collected by Dr. Margot is derived from radar inter-
ferometry using the Goldstone radar. Over the polar region, five images 
were collected and mosaicked together. To collect elevation informa-
tion, the radar signal is sent from one antenna and is received by at least 
two antennas. The phase difference in the received signal from the two 
radar sites provides information about the elevation. The elevation 
information derived from radar interferometry is relative and requires 
the use of the Clementine altimetry points to provide absolute elevation 
information relative to a datum (Margot and others 1999, 2000).
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Sources for north hemisphere topographic data
[Coordinates shown in parenthesis are longitude 

coordinates in 0 to 360 east system/

	 Minimum	 Maximum	 Count	 Percent

	 –10000	 –9500
	 –9500	 –9000
	 –9000	 –8500
	 –8500	 –8000
	 –8000	 –7500
	 –7500	 –7000
	 –7000	 –6500
	 –6500	 –6000
	 –6000	 –5500
	 –5500	 –5000	 436	 0.00%
	 –5000	 –4500	 2,094	 0.01%
	 –4500	 –4000	 37,129	 0.20%
	 –4000	 –3500	 159,400	 0.84%
	 –3500	 –3000	 259,451	 1.37%
	 –3000	 –2500	 1,235,289	 6.52%
	 –2500	 –2000	 2,038,202	 10.75%
	 –2000	 –1500	 2,444,140	 12.89%
	 –1500	 –1000	 2,609,187	 13.76%
	 –1000	 –500	 2,135,526	 11.26%
	 –500	 0	 1,422,579	 7.50%
	 0	 500	 1,002,400	 5.29%
	 500	 1000	 902,322	 4.76%
	 1000	 1500	 880,066	 4.64%
	 1500	 2000	 854,527	 4.51%
	 2000	 2500	 759,128	 4.00%
	 2500	 3000	 595,557	 3.14%
	 3000	 3500	 387,540	 2.04%
	 3500	 4000	 283,221	 1.49%
	 4000	 4500	 291,642	 1.54%
	 4500	 5000	 242,947	 1.28%
	 5000	 5500	 169,376	 0.89%
	 5500	 6000	 121,193	 0.64%
	 6000	 6500	 81,690	 0.43%
	 6500	 7000	 27,922	 0.15%
	 7000	 7500	 10,062	 0.05%
	 7500	 8000	 3,868	 0.02%
	 8000	 8500	 1,051	 0.01%
	 8500	 9000
	 9000	 9500
	 9500	 10000
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	 Minimum	 Maximum	 Count	 Percent

	 –10000	 –9500	 222	 0.00%
	 –9500	 –9000	 543	 0.00%
	 –9000	 –8500	 1,079	 0.01%
	 –8500	 –8000	 2,074	 0.01%
	 –8000	 –7500	 3,179	 0.02%
	 –7500	 –7000	 6,256	 0.03%
	 –7000	 –6500	 27,621	 0.15%
	 –6500	 –6000	 38,568	 0.20%
	 –6000	 –5500	 107,715	 0.57%
	 –5500	 –5000	 337,103	 1.79%
	 –5000	 –4500	 368,159	 1.95%
	 –4500	 –4000	 380,221	 2.01%
	 –4000	 –3500	 392,589	 2.08%
	 –3500	 –3000	 412,096	 2.18%
	 –3000	 –2500	 560,468	 2.97%
	 –2500	 –2000	 931,668	 4.93%
	 –2000	 –1500	 1,795,511	 9.51%
	 –1500	 –1000	 2,249,904	 11.92%
	 –1000	 –500	 2,344,833	 12.42%
	 –500	 0	 1,982,401	 10.50%
	 0	 500	 1,433,413	 7.59%
	 500	 1000	 1,189,377	 6.30%
	 1000	 1500	 882,006	 4.67%
	 1500	 2000	 656,271	 3.48%
	 2000	 2500	 615,299	 3.26%
	 2500	 3000	 540,626	 2.86%
	 3000	 3500	 438,322	 2.32%
	 3500	 4000	 338,557	 1.79%
	 4000	 4500	 257,905	 1.37%
	 4500	 5000	 203,248	 1.08%
	 5000	 5500	 149,660	 0.79%
	 5500	 6000	 107,449	 0.57%
	 6000	 6500	 89,343	 0.47%
	 6500	 7000	 29,753	 0.16%
	 7000	 7500	 6,604	 0.03%
	 7500	 8000	 599	 0.00%
	 8000	 8500
	 8500	 9000
	 9000	 9500
	 9500	 10000

Elevation values for the north hemisphere 
binned in increments of 500 meters. Count is 
number of elevation posts within the bin. 
Percent is count for indicated elevation values 
divided by total count.

Elevation values for the south hemisphere bin-
ned in increments of 500 meters. Count is 
number of elevation posts within the bin. Per-
cent is count for indicated elevation values 
divided by total count.

	 Elevation (meters)
Minimum	 –9882
Maximum	 7678
Mean	 –402
Standard Deviation	 2306

	 Elevation (meters)
Minimum	 –5121
Maximum	 8193
Mean	 –266
Standard Deviation	 2078

COLOR-CODED TOPOGRAPHY AND SHADED RELIEF MAP OF THE LUNAR NORTH AND SOUTH HEMISPHERES
L 10M ± 90/0 RTK

2002

NOTES ON BASE
This sheet is one in a series of topographic maps that presents color-
coded topographic data digitally merged with shaded relief data.

ADOPTED FIGURE

The figure for the Moon, used for the computation of the map projec-
tion, is a sphere with a radius of 1737.4 km (Seidelmann and others, 
2001). Because the Moon has no surface water, and hence no sea level, 
the datum (the 0 km contour) for elevations is defined as the radius of 
1737.4 km. Coordinates are based on the mean Earth/polar axis (M.E.) 
coordinates system, the z axis is the axis of the Moon’s rotation, and 
the x axis is the mean Earth direction. The center of mass is the origin 
of the coordinate system (Davies and Colvin, 2000). The equator lies in 
the x–y plane and the prime meridian lies in the x–z plane with east 
longitude values being positive.

PROJECTION

The projection is Lambert Azimuthal Equal Area Projection. The scale 
factor at the central latitude and central longitude point is 1:10,000,000. 
For the north hemisphere the central latitude and central longitude point 
is at 90° north and 0°. For the south hemisphere the central latitude and 
central longitude point is at 90° south and 0°.

CONTROL

The original control for the shaded relief maps was based on horizontal 
control tied to either the Lunar Positional Reference of 1974 (Schimer-
man, 1975) or the Apollo control system of 1973. Positional discrepan-
cies as large as 25 km at map scale existed in the original shaded relief 
base. To improve the accuracy, digital shaded relief data were aligned 
with a mosaic produced from Clementine 750 nm images (Eliason, 
1997, Isbell and others, 1997, Eliason and others, 1999). This align-
ment process consisted of picking features (commonly called match or 
tie points) that were visible in both the shaded relief data and the Clem-
entine mosaic. To accomplish this, the files were divided into three 
areas: north pole, equatorial region, and south pole. They were aligned 
first in the equatorial region and then in the polar regions. Within the 
equatorial region, an area extending from 60° S. to 60° N., approxi-
mately 1000 points were picked. Within the north polar region, an area 
from 57° N. to 90° N., approximately 1900 points were picked. Within 
the south polar region, an area from 57° S. to 90° S., approximately 
1100 points were picked. These points were used to warp the shaded 
relief map to match the Clementine mosaic. The Clementine mosaic has 
a positional accuracy of 500 m (1/60°) (Eliason and others, 1999).

Vertical control is based on measurements from the Clementine laser 
altimeter that collected data between 79° S. and 81° N. The along-track 
spacing of these measurements varied: over some smooth mare surfaces 
an along-track spacing of 20 km was achieved; where the instrument 
lost lock over rough highland terrain, the spacing degraded to 100 km. 

The across-track spacing was based on the orbital ground track and is 
approximately 60 km (2°) at the equator. Elevation values were col-
lected at 72,548 points by the Clementine laser altimeter. The estimated 
vertical accuracy of points collected by the Clementine laser altimeter 
is 130 m (Smith and others, 1997).

The Clementine laser altimeter did not collect data over the lunar north 
or south pole. Therefore, topographic data were collected photogram-
metrically to fill in these gaps. The image sources were the oblique and 
nadir 750 nm images collected by the Clementine UVVIS camera (Ro-
siek and others, 1998). Vertical control, for the photogrammetric data, 
was established by using the Clementine laser altimeter data at the 
outer edge of these circular polar areas, and the imagery was used to 
bridge control and fill in the central part of the circle (Rosiek and oth-
ers, 2001). The expected precision of points collected photogrammetri-
cally is 180 m (Rosiek and others, 1998). Further discussion of the 
photogrammetric topographic data can be found in the topographic data 
section below.

IMAGE BASE

The shaded relief data were originally published as a series of 1:5 mil-
lion shaded relief maps. This series included three U.S. Geological Sur-
vey maps: I–1218–B, Shaded Relief Map of the Lunar Far Side, 1980; 
I–1326–A, Shaded Relief Map of the Lunar Polar Regions, 1981; and 
I–2276, Sheet 2 of 2, Shaded Relief Map of the Lunar Near Side, 1992. 
These data were digitized and mosaicked into a single digital file. An 
area of approximately 500,000 km2 near the south pole was not visible 
in any pre-Clementine images and is blank on the published map. The 
digitized relief base was revised based on the Clementine mosaic and 
recent Earth-based radar imagery (Margot and others, 1999) to show 
features in this area. Errors that were present in the original interpreta-
tions of lunar morphology have not been corrected in the digital version 
of the warped shaded relief map base. These original errors were 
caused by scanty data, ambiguities introduced by highly oblique solar 
incidence angles, and distortions created in generating orthophoto-
graphs from oblique images (Rosiek and Aeschliman, 2001).

TOPOGRAPHIC DATA

The Clementine laser altimeter points were interpolated to create a 
global topographic gridded digital terrain model for the lunar surface. 
Because the altimeter points were sparser near the poles and non-exis-
tent over the poles in this digital terrain model, only data between 75° 
S. and 75° N. were used in the final digital terrain model. To fill in the 
polar regions, topographic data were collected photogrammetrically 
from Clementine 750 nm oblique and nadir images.

For the photogrammetric analysis, horizontal control was established 
by selecting some of the match points that were used in building the 
Clementine global mosaic. These points provided estimates for latitude 
and longitude values, but no estimate for elevation values. Vertical con-

trol was established by using the global topographic gridded digital ter-
rain model developed from the Clementine laser altimeter points to 
estimate elevation values for the Clementine match points. To improve 
the geometry of the control network for the photogrammetric analysis, 
the Clementine match points, which were selected to tie two images 
together in order to build the Clementine global mosaic, were transfer-
red to all images that contained the point. Additional points were 
selected to have four well-distributed points per image, where possible. 
Analytical areotriangulation, a weighted least squares process, is used 
to solve for all the parameters of the photogrammetric project. These 
parameters include image sensor position and angles; latitude, longi-
tude, and elevation of match points; and image coordinates of match 
points. Adjusting the weight assigned to a parameter determines 
whether values with high weight are held to the original estimate or val-
ues with low weight are allowed to float and a new value determined 
for the parameter. The parameters with the most error in their original 
estimate for their values are the image sensor angles, so they are given 
a low weight. The latitude and longitude values of Clementine match 
points are given a high weight so the solution holds to the Clementine 
global mosaic horizontal coordinates. Weights for the elevation values 
are varied depending on the horizontal distance to a Clementine laser 
altimeter point: match points within 2000 m of a Clementine laser 
altimeter point are given a high weight; match points between 2000 m 
and 5000 m from a Clementine laser altimeter point are given a 
medium weight; and match points greater than 5000 m from a Clemen-
tine laser altimeter point are given a low weight. This weighting allows 
the vertical control to be bridged between areas of known vertical con-
trol (the area covered by Clementine laser altimeter measurements) and 
the areas void of control (the area over the poles).

The Clementine mission collected both oblique and vertical images 
over the polar regions; these images form stereo pairs that can be used 
photogrammetrically to collect topographic data. In the north pole 
region (90° N. to 64° N. latitude) data were collected from 640 stereo 
models. Over the south pole region (90° S. to 63° S. latitude) topo-
graphic data were collected from 667 stereo models. Topographic data 
were collected within each stereo model with an elevation post spacing 
of 1 km in the x and y directions. This spacing resulted in 1,437,368 
points being collected in the north pole region and 1,724,872 points 
being collected in the south pole region. On average, over the area that 
data were collected (79° S. and 81° N.), the Clementine laser altimeter 
collected an elevation value for every 514 km2; and the photogrammet-
ric data collected an elevation value for every 1.3 km2 in the north pole 
and 1.2 km2 in the south pole. The photogrammetric data were merged 
and vertically transformed to align with the Clementine laser altimeter 
data to form the final digital terrain model (Rosiek and others, 2001).

Merging the topographic data required an iterative process to reduce the 
error between the photogrammetric data and the topographic data 

derived from the Clementine laser altimeter data. At first the photo-
grammetric topographic data exhibited a systematic stair-step error, in 
that stereo models closer to the poles had a systematic bias to be higher 
than stereo models farther from the poles. When this bias was removed, 
the resulting digital terrain model had a bowl-shape appearance with a 
low spot near the pole. Each stereo model was tilted to remove the bowl 
shape: for stereo models in the north pole area this was 800 m per 
degree and for stereo models in the south pole area this was 1 km per 
degree. To fit the stereo models to the Clementine laser altimeter data, 
an initial set of stereo models that overlaid the Clementine laser altime-
ter data was adjusted to vertically align with the Clementine laser altim-
eter data. Stereo models that overlaid the previously adjusted stereo 
models were adjusted further, this process continued until all stereo 
models were adjusted to align vertically.

In analyzing the photogrammetric data for the north pole region, 
1,189,935 points (83% of the data) occur on two or more stereo models. 
For 90% of those points, the standard deviation in elevation is between 
24 and 409 m, with a mean of 184 m. In the south pole region, 
1,262,349 points (73% of the data) occur on two or more stereo models. 
For 90% of those points, the standard deviation in elevation is between 
13 and 395 m, with a mean of 160 m.

In the north pole region 1,276 Clementine laser altimeter points are in 
the area where photogrammetric topographic data were collected. 
Comparing the photogrammetric topographic data with the Clementine 
laser altimeter points shows that for the north pole region the stereo 
topographic data is an average of 46 m higher than the Clementine 
laser altimeter points, with a standard deviation of 719 m. In the south 
pole region, 1,379 Clementine laser altimeter points are in the area 
where photogrammetric topographic data were collected. For the south 
pole region the stereo topographic data is an average of 163 m lower 
than the Clementine laser altimeter points, with a standard deviation of 
1005 m.

The merged topographic data were color-coded and combined with the 
shaded relief data. Areas where no topographic data were collected are 
not color-coded, and the shaded relief image is shown as gray scale.

NOMENCLATURE

The number, size, and placement of text annotations were chosen to 
provide a general orientation of conspicuous features on a 
1:10,000,000-scale map. Features are labeled with names approved by 
the International Astronomical Union (for a complete list of lunar 
nomenclature, see http://planetarynames.wr.usgs.gov ).

L 10M ±90/0 RTK:	  Abbreviation for Moon; 1:10,000,000 series; cen-
ter of maps: 90° north latitude and 0° longitude 
for north hemisphere, and 90° south latitude and 
0° longitude for south hemisphere; shaded relief 
(R) with topographic data and nomenclature (T) 

and color-coded topographic data (K) (Greeley 
and Batson, 1990).

OTHER SOURCES OF LUNAR ELEVATION DATA

Two other recent sources of lunar elevation data are from work done by 
Dr. Tony Cook of the National Air and Space Museum and by Dr. Jean-
Luc Margot while at Cornell University. The elevation data collected by 
Dr. Cook is derived from overlapping Clementine images from the 
same orbit. This method provides a larger set of images to use in col-
lecting topographic data. Elevation values that are collected are relative 
to each other and are not known in an absolute sense relative to some 
datum. To provide an estimate of the absolute height, the elevation val-
ues are matched to the Clementine altimetry data and to elevation val-
ues previously collected where Clementine altimetry does not exist. 
Traditional photogrammetric solutions employ a least squares method 
to distribute the error throughout the model, whereas the method 
employed by Dr. Cook aligns the derived data with the Clementine 
altimetry data where it exists and in areas where there is no data the rel-
ative elevation measurements are aligned with previous aligned data 
until the area is connected back with Clementine data. The error in 
unknown areas is unconstrained, but the method does close back to an 
area with known elevation values, which constrains the error at the 
starting and ending spots (Cook and others 2000).

The elevation data collected by Dr. Margot is derived from radar inter-
ferometry using the Goldstone radar. Over the polar region, five images 
were collected and mosaicked together. To collect elevation informa-
tion, the radar signal is sent from one antenna and is received by at least 
two antennas. The phase difference in the received signal from the two 
radar sites provides information about the elevation. The elevation 
information derived from radar interferometry is relative and requires 
the use of the Clementine altimetry points to provide absolute elevation 
information relative to a datum (Margot and others 1999, 2000).
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